搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于车载通信标准街道场景的电磁散射信道模型

周杰 姚颖莉 邵根富 沈晓燕 刘鹏

引用本文:
Citation:

基于车载通信标准街道场景的电磁散射信道模型

周杰, 姚颖莉, 邵根富, 沈晓燕, 刘鹏

An electromagnetic street scattering channel model for outdoor vehicular-to-vehicular communication systems

Zhou Jie, Yao Ying-Li, Shao Gen-Fu, Shen Xiao-Yan, Liu Peng
PDF
导出引用
  • 针对室外无线信道视距(line of sight, LOS)/非视距(non-line of sight, NLOS)传输环境下的车到车(vehicular-to-vehicular, V2V)通信系统, 本文提出了一种基于标准街道散射的统计信道模型, 其移动发射机(mobile transmitter, MT)与移动接收机(mobile receiver, MR) 处于运动状态, 街道两旁分布的散射体固定. 由几何模型出发又引入了一种随机的参考信道模型, 其散射体有无穷多个, 均以平行于街道两侧的散射条纹形式均匀分布在三维 (three dimensional, 3D)空间的一个二维(two dimensional, 2D)矩形内部. 在室外街道通信环境下, 模型推导了散射信道中发射角(angle of departure, AOD)以及到达角(angle of arrival, AOA)的概率密度函数(probability density functions, PDFs)解析式; 研究了多普勒功率谱密度(power spectral density, PSD)及其时间自相关函数(autocorrelation function, ACF); 分析了模型多普勒参数以及街道散射体等因素对V2V通信系统性能的影响. 与城市、农村的测量信道对比分析, 表明本模型仿真的统计特性符合理论与实际, 拓宽了室外V2V无线通信信道建模的研究. 为评估室外V2V通信系统的传输特性、仿真无线通信系统提供了有力的研究工具.
    The vehicular-to-vehicular (V2V) communications have recently received great attention due to some traffic telematic applications that make transportation safer, more efficient, and more environmentally friendly. Reliable traffic telematic applications and services require V2V wireless communication systems to be able to provide robust connectivity. To develop such wireless communication systems and standards, accurate channel models for the V2V communication systems are required. In this paper, a geometric street scattering channel model for a V2V communication system is presented under line-of-sight (LOS) and non-LOS (NLOS) propagation conditions. Starting from the geometric model, a stochastic reference channel model is developed, where the scatterers are uniformly distributed in rectangles in the form of stripes parallel to both sides of the street. A typical propagation scenario for the proposed model is presented, where the buildings and the trees can be considered as scatterers. Analytical expressions for the probability density functions (PDFs) of the angle-of-departure (AOD) and the angle-of-arrival (AOA) are derived. By obtaining the PDF of the total Doppler frequency, the Doppler power spectral density (PSD) and the autocorrelation function (ACF) of the proposed model are also investigated and computed, assuming that the mobile transmitter (MT) and the mobile receiver (MR) are moving, while the surrounding scatterers are fixed. In this respect the underlying radio channel model differs from the traditional cellular channels. We can draw the conclusion that the PDFs of AOD and AOA first increase and then decrease within a certain angle range; the Doppler power spectral density of the signal in the outdoor street environment presents the peak value in fmax. In addition, while the Rice distribution factor is larger, the value of the autocorrelation function increases relatively, the stability of the fluctuation increases correspondingly as well. To validate the reference channel model, its Doppler parameters are compared with those of a real-world measured channel for urban and rural areas. The numerical results show a good fitting of the theoretical results to the computer simulations. In the proposed geometry-based channel model, we not only study the influence of the street scatterers on the performance of V2V communication system, but also broaden the research of the channel modeling of outdoor wireless communication in turn. To evaluate the propagation characteristics of the outdoor V2V communication systems and the simulation of wireless communication system, this paper provides a powerful research tool.
      通信作者: 姚颖莉, yaoyingli2000@163.com
    • 基金项目: 国家自然科学基金(批准号:61471153)、江苏省高校自然科学科学研究重大计划(批准号:14KJA510001)、中国博士后基金(批准号:010986678)和江苏省科技支撑计划(工业)项目(批准号:BE2011195)资助的课题.
      Corresponding author: Yao Ying-Li, yaoyingli2000@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471153), the Jiangsu Provincial Research Scheme of Natural Science for Higher Education Institute, China (Grant No. 14KJA510001), the China Postdoctoral Foundation (Grant No. 010986678), and the Scientific and Technological Support Project (Industry) of Jiangsu Province, China (Grant No. BE2011195).
    [1]

    Qu F, Wang F Y, Yang L 2010 IEEE Commun. Magazine 48 136

    [2]

    Ptzold M, Hogstad B O 2004 Proc. 60th IEEE Semiannual Veh. Technol. Conf. Los Angeles, USA, September 1-4, 2004 p144

    [3]

    Zhou J, Jiang H, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 140506 (in Chinese) [周杰, 江浩, 菊池久和, 邵根富 2014 63 140506]

    [4]

    Ptzold M, Hogstad B O 2008 Wireless Commun. Mobile Computing 8 597

    [5]

    Oda Y, Tsunekawa K, Hatay M 2000 IEEE Antennas and Propagation for Wireless Communications Waltham, Massachusetts, November 6-8, 2000 pp87-90

    [6]

    Ptzold M, Hogstad B O 2004 Wireless Commun. Mobile Computing. 4 727

    [7]

    Byers G J, Takawira F 2004 IEEE Trans. Veh. Technol. 53 634

    [8]

    Ma Y, Ptzold M 2007 International Symposium on Wireless Personal Multimedia Communications, India, December 3-4, 2007 pp380-384

    [9]

    Kong S H 2009 IEEE Trans. Wireless Commun. 5 2609

    [10]

    Akki A S, Haber F 1986 IEEE Trans. Veh. Technol. 35 2

    [11]

    Chelli A, Ptzold M 2007 Proc. 4th IEEE International Symposium on Wireless Communication Systems Trondheim, Norway, Oct. 4-9, 2007 pp792-797

    [12]

    Chelli A, Ptzold M 2009 Proc. Wireless Communications and Signal Processing Nanjing, China, Nov. 9-11, 2009 pp1-5

    [13]

    Ma Y, Ptzold M 2010 Proc. Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) Moscow, Russia, Oct. 3-7, 2010 p777

    [14]

    Ma Y, Ptzold M 2010 Proc. 71st IEEE Veh. Technol. Conf., VTC 2010-Spring Taipei, Taiwan, May 4-10, 2010 p1

    [15]

    Jiang H, Zhou J 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰 2014 63 048702]

    [16]

    Gutierrez C A, Ptzold M 2009 Workshop on Mobile Computing and Networking Technol. Petersburg, Russia, February 4-7, 2009 pp1-5

    [17]

    Zhou J, Cao Z, Kikuchi H 2015 Journal of Harbin Engineering University 36 1153 (in Chinese) [周杰, 曹志钢, 菊池久和 2015 哈尔滨工程大学学报 36 1153]

    [18]

    Janaswamy R 2002 IEEE Trans. Veh. Technol. 51 1242

    [19]

    Baltzis K B, Sahalos J N 2008 Wireless Personal Commun. 51 329

    [20]

    Tan I, Wanbin T, Laberteaux K, Bahai A 2008 Proc. IEEE ICC'08, 5 4882

    [21]

    Alsehaili M, Noghanian S R, Sebak A 2010 Prog. Electromagnet. Res. 109 191

    [22]

    Zhou J, Cao Z, Kikuchi H 2014 IET Commun. 8 1

    [23]

    Avazov N, Ptzold M 2011 Adv. Technol. for Commun. (ATC), 2011 International Conf. on. IEEE 2011 224

    [24]

    Avazov N, Ptzold M 2013 Personal Indoor and Mobile Radio Commun. (PIMRC), 2013 IEEE 24th International Symposium on. IEEE 2013 253

    [25]

    Zhou J, Wang Y L 2014 Acta Phys. Sin. 63 240507 (in Chinese) [周杰, 王亚林 2014 63 240507]

    [26]

    Papoulis A, Pillai S U 2002 Probability, Random Variables, and Stochastic Processes (USA: Tata McGraw-Hill Education) pp89-98

  • [1]

    Qu F, Wang F Y, Yang L 2010 IEEE Commun. Magazine 48 136

    [2]

    Ptzold M, Hogstad B O 2004 Proc. 60th IEEE Semiannual Veh. Technol. Conf. Los Angeles, USA, September 1-4, 2004 p144

    [3]

    Zhou J, Jiang H, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 140506 (in Chinese) [周杰, 江浩, 菊池久和, 邵根富 2014 63 140506]

    [4]

    Ptzold M, Hogstad B O 2008 Wireless Commun. Mobile Computing 8 597

    [5]

    Oda Y, Tsunekawa K, Hatay M 2000 IEEE Antennas and Propagation for Wireless Communications Waltham, Massachusetts, November 6-8, 2000 pp87-90

    [6]

    Ptzold M, Hogstad B O 2004 Wireless Commun. Mobile Computing. 4 727

    [7]

    Byers G J, Takawira F 2004 IEEE Trans. Veh. Technol. 53 634

    [8]

    Ma Y, Ptzold M 2007 International Symposium on Wireless Personal Multimedia Communications, India, December 3-4, 2007 pp380-384

    [9]

    Kong S H 2009 IEEE Trans. Wireless Commun. 5 2609

    [10]

    Akki A S, Haber F 1986 IEEE Trans. Veh. Technol. 35 2

    [11]

    Chelli A, Ptzold M 2007 Proc. 4th IEEE International Symposium on Wireless Communication Systems Trondheim, Norway, Oct. 4-9, 2007 pp792-797

    [12]

    Chelli A, Ptzold M 2009 Proc. Wireless Communications and Signal Processing Nanjing, China, Nov. 9-11, 2009 pp1-5

    [13]

    Ma Y, Ptzold M 2010 Proc. Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) Moscow, Russia, Oct. 3-7, 2010 p777

    [14]

    Ma Y, Ptzold M 2010 Proc. 71st IEEE Veh. Technol. Conf., VTC 2010-Spring Taipei, Taiwan, May 4-10, 2010 p1

    [15]

    Jiang H, Zhou J 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰 2014 63 048702]

    [16]

    Gutierrez C A, Ptzold M 2009 Workshop on Mobile Computing and Networking Technol. Petersburg, Russia, February 4-7, 2009 pp1-5

    [17]

    Zhou J, Cao Z, Kikuchi H 2015 Journal of Harbin Engineering University 36 1153 (in Chinese) [周杰, 曹志钢, 菊池久和 2015 哈尔滨工程大学学报 36 1153]

    [18]

    Janaswamy R 2002 IEEE Trans. Veh. Technol. 51 1242

    [19]

    Baltzis K B, Sahalos J N 2008 Wireless Personal Commun. 51 329

    [20]

    Tan I, Wanbin T, Laberteaux K, Bahai A 2008 Proc. IEEE ICC'08, 5 4882

    [21]

    Alsehaili M, Noghanian S R, Sebak A 2010 Prog. Electromagnet. Res. 109 191

    [22]

    Zhou J, Cao Z, Kikuchi H 2014 IET Commun. 8 1

    [23]

    Avazov N, Ptzold M 2011 Adv. Technol. for Commun. (ATC), 2011 International Conf. on. IEEE 2011 224

    [24]

    Avazov N, Ptzold M 2013 Personal Indoor and Mobile Radio Commun. (PIMRC), 2013 IEEE 24th International Symposium on. IEEE 2013 253

    [25]

    Zhou J, Wang Y L 2014 Acta Phys. Sin. 63 240507 (in Chinese) [周杰, 王亚林 2014 63 240507]

    [26]

    Papoulis A, Pillai S U 2002 Probability, Random Variables, and Stochastic Processes (USA: Tata McGraw-Hill Education) pp89-98

  • [1] 陆希成, 邱扬, 田锦, 汪海波, 江凌, 陈鑫. 基于多径信道模型研究时间反演腔的反演特性.  , 2022, 71(2): 024101. doi: 10.7498/aps.71.20210701
    [2] 陆希成, 邱扬, 田锦, 汪海波, 江凌, 陈鑫. 基于多径信道模型研究时间反演腔的反演特性.  , 2021, (): . doi: 10.7498/aps.70.20210701
    [3] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测.  , 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [4] 张金鹏, 张玉石, 李清亮, 吴家骥. 基于不同散射机制特征的海杂波时变多普勒谱模型.  , 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612
    [5] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾.  , 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [6] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型.  , 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [7] 周杰, 刘鹏, 黄雷, 朱兴宇, 邵根富. 室内直达与非直达环境无线传播综合信道建模.  , 2015, 64(17): 170505. doi: 10.7498/aps.64.170505
    [8] 何圣仲, 周国华, 许建平, 吴松荣, 陈利. 输出电容时间常数对V2控制Buck变换器的动力学特性的影响.  , 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [9] 周杰, 江浩, 菊池久和, 邵根富. 基于改进的统计信道模型与多天线系统性能分析.  , 2014, 63(14): 140506. doi: 10.7498/aps.63.140506
    [10] 江浩, 周杰, 菊池久和, 邵根富. 基于三维空间域移动通信统计信道的多普勒效应.  , 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [11] 周杰, 王亚林, 菊池久和. 三维空间域多普勒功率谱及其多天线系统性能.  , 2014, 63(24): 240507. doi: 10.7498/aps.63.240507
    [12] 海凛, 张业荣, 潘灿林. 混合分集多天线系统基于相关性的分析信道建模.  , 2013, 62(23): 238402. doi: 10.7498/aps.62.238402
    [13] 杨则金, 高清河, 郭云东, 程新路, 朱正和, 杨向东. LiO2(C2V,X2A2)分子的结构与势能函数.  , 2007, 56(10): 5723-5726. doi: 10.7498/aps.56.5723
    [14] 吴加贵, 吴正茂, 林晓东, 张 毅, 钟东洲, 夏光琼. 双信道光混沌通信系统的理论模型及性能研究.  , 2005, 54(9): 4169-4175. doi: 10.7498/aps.54.4169
    [15] 黄小益, 马东平. MgO:Cr3+和MgO:V2+的能谱随温度移位的拟合计算.  , 1995, 44(8): 1310-1320. doi: 10.7498/aps.44.1310
    [16] 钟锡华, 周岳明, 朱亚芬. 自相似时间信息的谱研究.  , 1991, 40(12): 1934-1941. doi: 10.7498/aps.40.1934
    [17] 钟锡华. 自相似结构的谱函数.  , 1990, 39(6): 59-66. doi: 10.7498/aps.39.59
    [18] 许掌龙, 刘古, 季振国, 周小霞. V(001)表面上(4×1)-O,(2×2)-S两超结构的角分辨光电子谱.  , 1988, 37(2): 311-317. doi: 10.7498/aps.37.311
    [19] 阮景辉, 陈桂英, 成之绪, 勾成, 杨同华, 陈凌孚, 周立, 尹道乐. (Hf0.5Zr0.5V2)Hx的声子谱与超导性的关系.  , 1983, 32(9): 1187-1190. doi: 10.7498/aps.32.1187
    [20] 许祯镛. 随机海洋声信道下的噪声场时空相关函数.  , 1976, 25(3): 246-253. doi: 10.7498/aps.25.246
计量
  • 文章访问数:  6075
  • PDF下载量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-27
  • 修回日期:  2016-05-16
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map