搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可激发气体振动弛豫时间的两频点声测量重建算法

张克声 朱明 唐文勇 欧卫华 蒋学勤

引用本文:
Citation:

可激发气体振动弛豫时间的两频点声测量重建算法

张克声, 朱明, 唐文勇, 欧卫华, 蒋学勤

Algorithm for reconstructing vibrational relaxation times in excitable gases by two-frequency acoustic measurements

Zhang Ke-Sheng, Zhu Ming, Tang Wen-Yong, Ou Wei-Hua, Jiang Xue-Qin
PDF
导出引用
  • 振动弛豫时间是可激发气体分子内外自由度能量转移速率的宏观体现, 它决定了声吸收谱峰值点对应的弛豫频率. 本文给出了等温、绝热定压和绝热定容三种不同热力学过程下振动弛豫时间的相互关系; 基于Petculescu和Lueptow [2005 Phys. Rev. Lett. 94 238301] 的弛豫过程合成算法, 推导了单一压强下两频点声测量值的弛豫时间重建算法. 该算法可应用于等温、绝热定压、绝热定容弛豫时间和弛豫频率的重建测量, 并避免了弛豫时间传统声测量方法需要不断改变气体腔体压强的问题. 仿真结果表明, 对于室温下CO2, CH4, Cl2, N2 和O2组成的多种气体, 重建的弛豫时间和弛豫频率与实验数据相符.
    Vibrational relaxation time is a parameter describing the macroscopic behavior of vibrational energy transition rate between molecular internal degrees of freedom (DOF) and external DOF in excitable gas, which determines the relaxation frequency of the maximum point in acoustic absorption spectrum. To measure the vibrational relaxation time, the traditional methods are used to obtain the acoustic absorption spectra by changing the ambient pressure at several operating frequencies. However, these traditional methods are not suitable for real-time measurement due to the complexity of equipment implementation and the non-ideality of test gas under high pressure. In order to solve those problems, we have developed an algorithm [2013 Meas. Sci. Technol. 24 055002] to capture the primary vibrational relaxation processes only based on the measurements of sound absorption and sound speed at two operating frequencies and a single pressure. But the algorithm only can reconstruct the absorption maximum and it cannot capture the relaxation time with high precision. To measure the frequency dependence of the complex effective specific heat of the relaxing gas, an algorithm synthesizing relaxation processes is given by Petculescu and Lueptow [2005 Phys. Rev. Lett. 94 238301]. In its derivation process, relaxational angular frequency was set to be the inverse ratio to relaxation time. However, the relaxational angular frequency was measured in the adiabatic process of transmission thermodynamic, while the relaxation time was obtained in the thermodynamic isothermal process, the derivation confused the two thermodynamic processes, making the algorithm unable to capture the relaxation frequency with high precision. In order to estimate the relaxation time with higher accuracy, in this paper we first obtain the theoretical relationship among the relaxation times under the three types of thermodynamics conditions, i. e., isothermal, adiabatic constant pressure and adiabatic constant volume. Then we correct the relaxation time derivation and propose our corrected algorithm to reconstruct the relaxation frequencies and relaxation times under the conditions of isothermal, adiabatic constant pressure and adiabatic constant volume. In experiments and simulations, the relaxation times and relaxation frequencies reconstructed by our corrected algorithm for various gas compositions including carbon dioxide, methane, chlorine, nitrogen, and oxygen around room temperature are consistent with the experimental data.
      通信作者: 朱明, zhuming@mail.hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61461008, 61371139, 61571201, 61402122)、贵州省科学技术基金(批准号: 黔科合J字[2015]2065, 黔科合LH字[2014]7361)和贵州理工学院高层次人才引进项目(批准号: XJGC20140601)资助的课题.
      Corresponding author: Zhu Ming, zhuming@mail.hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61461008, 61371139 61571201, 61402122), the Natural Science Foundation of Guizhou Province, China (Grant Nos. [2015]2065, [2014]7361), and the Recruitment Program of Guizhou Institute of Technology (Grant No. XJGC20140601).
    [1]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon)

    [2]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Chem. Phys. 20 1591

    [3]

    Tanczos F I 1956 J. Chem. Phys. 25 439

    [4]

    Zhang K S, Ou W H, Jiang X Q, Long F, Hu M Z 2014 J. Korean Phys. Soc. 65 102

    [5]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [6]

    Zhang K S, Wang S, Zhu M, Ding Y, Hu Y 2013 Chin. Phys. B 22 014305

    [7]

    Zhang K S, Wang S, Zhu M, Hu Y, Jia Y Q 2012 Acta Phys. Sin. 61 174301 (in Chinese) [张克声, 王殊, 朱明, 胡佚, 贾雅琼 2012 61 174301]

    [8]

    Morse P M, Ingard K U 1968 Theoretical Acoustics (New York: McGraw-Hill)

    [9]

    Bhatia A B 1985 Ultrasonic Absorption (New York: Dover)

    [10]

    Mason W P 1965 Physical Acoustics (Vol. II, Pt. A) (New York: Academic Press)

    [11]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic)

    [12]

    Shields F D 1970 J. Acoust. Soc. Am. 47 1262

    [13]

    Zhang K S, Wang S, Zhu M, Ding Y 2013 Meas. Sci. Technol. 24 055002

    [14]

    Zhang K S, Chen L K, Ou W H, Jiang X Q, Long F 2015 Acta Phys. Sin. 64 054302 (in Chinese) [张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞 2015 64 054302]

    [15]

    Hu Y, Wang S, Zhu M, Zhang K S, Liu T T, Xu D Y 2014 Sens. Actuat. B: Chem. 203 1

    [16]

    Bass H E, Sutherland L C, Piercy J, Evans L (in Mason W P, Thurston R N (Vol. XVII) Ed.) 1984 Absorption of Sound by the Atmosphere in Physical Acoustics (Orlando: Academic)

    [17]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [18]

    Bass H E, Bauer H J, Evans L B 1972 J. Acoust. Soc. Am. 52 821

    [19]

    Shields F D 1960 J. Acoust. Soc. Am. 32 180

    [20]

    Angona F A 1953 J. Acoust. Soc. Am. 25 1116

    [21]

    Bass H E 1973 J. Chem. Phys. 58 4783

    [22]

    Petculescu A G, Hall B, Fraenzle R, Phillips S, Lueptow R M 2006 J. Acous. Soc. Am. 120 1779

  • [1]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon)

    [2]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Chem. Phys. 20 1591

    [3]

    Tanczos F I 1956 J. Chem. Phys. 25 439

    [4]

    Zhang K S, Ou W H, Jiang X Q, Long F, Hu M Z 2014 J. Korean Phys. Soc. 65 102

    [5]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [6]

    Zhang K S, Wang S, Zhu M, Ding Y, Hu Y 2013 Chin. Phys. B 22 014305

    [7]

    Zhang K S, Wang S, Zhu M, Hu Y, Jia Y Q 2012 Acta Phys. Sin. 61 174301 (in Chinese) [张克声, 王殊, 朱明, 胡佚, 贾雅琼 2012 61 174301]

    [8]

    Morse P M, Ingard K U 1968 Theoretical Acoustics (New York: McGraw-Hill)

    [9]

    Bhatia A B 1985 Ultrasonic Absorption (New York: Dover)

    [10]

    Mason W P 1965 Physical Acoustics (Vol. II, Pt. A) (New York: Academic Press)

    [11]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic)

    [12]

    Shields F D 1970 J. Acoust. Soc. Am. 47 1262

    [13]

    Zhang K S, Wang S, Zhu M, Ding Y 2013 Meas. Sci. Technol. 24 055002

    [14]

    Zhang K S, Chen L K, Ou W H, Jiang X Q, Long F 2015 Acta Phys. Sin. 64 054302 (in Chinese) [张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞 2015 64 054302]

    [15]

    Hu Y, Wang S, Zhu M, Zhang K S, Liu T T, Xu D Y 2014 Sens. Actuat. B: Chem. 203 1

    [16]

    Bass H E, Sutherland L C, Piercy J, Evans L (in Mason W P, Thurston R N (Vol. XVII) Ed.) 1984 Absorption of Sound by the Atmosphere in Physical Acoustics (Orlando: Academic)

    [17]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [18]

    Bass H E, Bauer H J, Evans L B 1972 J. Acoust. Soc. Am. 52 821

    [19]

    Shields F D 1960 J. Acoust. Soc. Am. 32 180

    [20]

    Angona F A 1953 J. Acoust. Soc. Am. 25 1116

    [21]

    Bass H E 1973 J. Chem. Phys. 58 4783

    [22]

    Petculescu A G, Hall B, Fraenzle R, Phillips S, Lueptow R M 2006 J. Acous. Soc. Am. 120 1779

  • [1] 赵兴宇, 王丽娜, 韩宏博, 尚洁莹. 系列小分子液体中α弛豫与探针离子电导行为的对比.  , 2024, 73(14): 147701. doi: 10.7498/aps.73.20240478
    [2] 姚佳烽, 胡松佩, 杨璐, 吴阳, 韩伟, 刘凯. 基于生物阻抗谱的舌体肿瘤组织识别方法.  , 2021, 70(15): 158704. doi: 10.7498/aps.70.20210297
    [3] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间.  , 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [4] 梁宇宏, 李红娟, 尹辑文. 晶格弛豫方法研究PbSe量子点的带内弛豫过程.  , 2019, 68(12): 127301. doi: 10.7498/aps.68.20190187
    [5] 张向群, 王殊, 朱明. 常温下氢气声转动弛豫模型研究.  , 2018, 67(9): 094301. doi: 10.7498/aps.67.20172665
    [6] 任晓霞, 申凤娟, 林歆悠, 郑瑞伦. 石墨烯低温热膨胀和声子弛豫时间随温度的变化规律.  , 2017, 66(22): 224701. doi: 10.7498/aps.66.224701
    [7] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫.  , 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [8] 贾雅琼, 王殊, 朱明, 张克声, 袁飞阁. 气体声弛豫过程中有效比热容与弛豫时间的分解对应关系.  , 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [9] 王兵, 吴秀清. 双色噪声驱动光学双稳系统的弛豫时间研究.  , 2011, 60(7): 074214. doi: 10.7498/aps.60.074214
    [10] 桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋 军. 锂原子光电离过程中的弛豫效应.  , 2008, 57(4): 2152-2160. doi: 10.7498/aps.57.2152
    [11] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究.  , 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [12] 田建辉, 韩 旭, 刘桂荣, 龙述尧, 秦金旗. SiC纳米杆的弛豫性能研究.  , 2007, 56(2): 643-648. doi: 10.7498/aps.56.643
    [13] 辛宏梁, 袁望治, 程金科, 林 宏, 阮建中, 赵振杰. NiFeCoP/BeCu复合结构丝的巨磁阻抗效应和磁化频率特性.  , 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [14] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法.  , 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [15] 胡岗, A. GRECOS. 热库中振子弛豫过程的精确解.  , 1985, 34(1): 105-111. doi: 10.7498/aps.34.105
    [16] 李景德. 热电弛豫效应.  , 1984, 33(11): 1563-1568. doi: 10.7498/aps.33.1563
    [17] 徐积仁, 黄南堂, 蒋义枫, 傅广生, 吴振球. BCl3振动激发弛豫的红外吸收研究.  , 1981, 30(11): 1456-1463. doi: 10.7498/aps.30.1456
    [18] 张开明, 叶令. Si(111)表面原子弛豫研究.  , 1980, 29(1): 122-126. doi: 10.7498/aps.29.122
    [19] 霍裕平. 关联函数的长时间渐近行为——波对弛豫过程的影响.  , 1980, 29(1): 73-92. doi: 10.7498/aps.29.73
    [20] 马本堃. 自旋-晶格弛豫.  , 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
计量
  • 文章访问数:  6123
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-20
  • 修回日期:  2016-04-18
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map