搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于钴和坡莫合金纳磁体的全自旋逻辑器件开关特性研究

王森 蔡理 崔焕卿 冯朝文 王峻 齐凯

引用本文:
Citation:

基于钴和坡莫合金纳磁体的全自旋逻辑器件开关特性研究

王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯

Switching characteristics of all spin logic devices based on Co and Permalloy nanomagnet

Wang Sen, Cai Li, Cui Huan-Qing, Feng Chao-Wen, Wang Jun, Qi Kai
PDF
导出引用
  • 基于纳磁体动力学和自旋传输机理, 建立了全自旋逻辑(ASL)器件的自旋传输-磁动力学模型. 基于该模型分别研究了钴纳磁体构成的全自旋逻辑(CoASL)器件和坡莫合金纳磁体构成的全自旋逻辑(PyASL)器件在不同沟道长度和电源电压下的开关特性. 结果显示PyASL器件在开关延迟时间和功耗上要小于CoASL器件, 且能可靠工作的最大沟道长度要大于CoASL器件. 另外, 两种ASL器件的开关延迟时间可通过减小沟道长度或增加电源电压来减小; 而功耗可通过减小沟道长度或电源电压来减小. 同时, 减小沟道长度能有效抑制热噪声对开关延迟时间和功耗的影响, 但增大电源电压只能抑制热噪声对开关延迟时间的影响. 上述研究结果将为优化ASL器件磁性材料和器件结构提供重要的参数选择依据.
    The need for low-power alternatives to digital electronic circuits has aroused the increasing interest in spintronic devices for their potentials to overcome the power and performance limitations of (CMOS). In particular, all spin logic (ASL) technology, which stores information using the magnetization direction of the nano-magnet and communicates using spin current, is generally thought to be a good post-CMOS candidate for possessing capabilities such as nonvolatiliy, high density, low energy dissipation. In this paper, based on nano-magnetic dynamics described by Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation and transport physics of spin injection and spin diffusion, a coupled spin-transport/magneto-dynamics model for ASL is established. Under different channel lengths and applied voltages, the switching characteristics of ASL device comprised of Co and Permalloy (Py) nano-magnets are analyzed by using the coupled spin-transport/magneto-dynamics model. The results indicate that the switch delay, energy dissipation and thermal noise effect of PyASL are lower than those of CoASL. The main reason is that the saturation magnetization of Py is less than that of Co. Under the same applied voltage, the maximal channel length of PyASL is longer than that of CoASL when ASL device can switch accurately. Moreover, the two ASL devices' switching delay can be reduced by reducing channel length or increasing applied voltage, and the energy dissipation can be reduced by reducing channel length or applied voltage, whereas there are no optimized applied voltages to minimize the energy-delay product. In addition, the influences of thermal noise on switching delay and energy dissipation can be improved by lowering channel length, but increasing applied voltage can only improve the influence of thermal noise on switching delay. The above-mentioned conclusions will supply essential guidelines for optimizing the ASL devices' materials and configuration.
      通信作者: 王森, wangsen1998-2002@163.com
    • 基金项目: 国家自然科学基金(批准号: 61172043)、陕西省自然科学基础研究计划项目(批准号: 2014JQ8343)和空军工程大学理学院博士(后)科研资助基金(批准号: 2013BSKYQD10)资助的课题.
      Corresponding author: Wang Sen, wangsen1998-2002@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61172043), the Program of Shaanxi Provincial Natural Science for Basic Research, China (Grant No. 2014JQ8343) and the Sustentation Funds of the Science College for Doctoral (Postdoctoral) Scientific Research, Air Force Engineering University, China (Grant No. 2013BSKYQD10).
    [1]

    Locatelli N, Cros V, Grollier J 2014 Nature Mater. 13 11

    [2]

    Kim J, Paul A, Crowell P A, Koester S J, Sapatnekar S S, Wang J P, Kim C H 2015 Proc. IEEE 103 106

    [3]

    Yang F J, Han S X, Xie S J 2014 Chin. Phys. B 23 058106

    [4]

    Wu S B, Chen S, Li H, Yang X F 2012 Acta Phys. Sin. 61 097504 (in Chinese) [吴少兵, 陈实, 李海, 杨晓非 2012 61 097504]

    [5]

    Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3149

    [6]

    Grollier J 2001 Appl. Phys. Lett. 78 3663

    [7]

    Fang B, Zeng Z M 2014 Chin. Sci. Bull. 59 1804 (in Chinese) [方彬, 曾中明 2014 科学通报 59 1804]

    [8]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 60 017502]

    [9]

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427 (in Chinese) [张磊, 任敏, 胡九宁, 邓宁, 陈培毅 2008 57 2427]

    [10]

    Wang W G, Li M G, Hageman S, Chien C L 2012 Nature Mater. 11 64

    [11]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2009 Appl. Phys. Lett. 94 122508

    [12]

    Guo Z Z, Deng H D, Huang J S, Xiong W J, Xu C D 2014 Acta Phys. Sin. 63 138501 (in Chinese) [郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东 2014 63 138501]

    [13]

    Liu H F, Syed S A, Han X F 2014 Chin. Phys. B 23 077501

    [14]

    Chen X, Liu H F, Han X F, Ji Y 2013 Acta Phys. Sin. 62 137501 (in Chinese) [陈希, 刘厚方, 韩秀峰, 姬杨 2013 62 137501]

    [15]

    Yang J, Zhang X, Miao R D 2014 Acta Phys. Sin. 63 217202 (in Chinese) [杨军, 章曦, 苗仁德 2014 63 217202]

    [16]

    Xu P 2008 Nature Nanotech. 3 97

    [17]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266

    [18]

    Srinivasan S, Sarkar A, Behin-Aein B, Datta S 2011 IEEE Trans. Magn. 47 4026

    [19]

    Calayir V, Nikonov D E, Manipatruni S, Young I A 2014 IEEE Trans. Circuits Syst. I. Reg. Papers 61 393

    [20]

    Chang S C, Iraei R M, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Electron Dev. 61 2905

    [21]

    Chang S C, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Magn. 50 3400513

    [22]

    Behin-Aein B, Sarkar A, Srinivasan S, Datta S 2011 Appl. Phys. Lett. 98 123510

    [23]

    Roy K, Bandyopadhyay S, Atulasimha J 2012 J. Appl. Phys. 112 023914

    [24]

    Brataas A, Bauer G E W, Kelly P J 2006 Phys. Rep. 427 157

    [25]

    Manipatruni S, Nikonov D E, Young I A 2012 IEEE Trans. Circuits Syst. I. Reg. Papers 59 2801

    [26]

    Ji Y, Hoffmann A, Jiang J S, Pearson J E, Bader S D 2007 J. Phys. D: Appl. Phys. 40 1280

    [27]

    Bass J, William P P 2007 J. Phys.: Condens. Matter 19 183201

    [28]

    Trudel S, Gaier O, Hamrle J, Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 193001

    [29]

    Bonanni V, Bisero D, Vavassori P, Gubbiotti G, Madami M, Adeyeye A O, Goolaup S, Singh N, Ono T, Spezzani C 2009 J. Magn. Magn. Mater. 321 3038

    [30]

    Johnson M T, Jungblut R, Kelly P J, Broeder F J A 1995 J. Magn. Magn. Mater. 148 118

    [31]

    Lee S W, Lee K J 2010 IEEE Trans. Magn. 46 2349

    [32]

    Gradmann U, Elmers H J 1999 J. Magn. Magn. Mater. 206 L107

  • [1]

    Locatelli N, Cros V, Grollier J 2014 Nature Mater. 13 11

    [2]

    Kim J, Paul A, Crowell P A, Koester S J, Sapatnekar S S, Wang J P, Kim C H 2015 Proc. IEEE 103 106

    [3]

    Yang F J, Han S X, Xie S J 2014 Chin. Phys. B 23 058106

    [4]

    Wu S B, Chen S, Li H, Yang X F 2012 Acta Phys. Sin. 61 097504 (in Chinese) [吴少兵, 陈实, 李海, 杨晓非 2012 61 097504]

    [5]

    Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3149

    [6]

    Grollier J 2001 Appl. Phys. Lett. 78 3663

    [7]

    Fang B, Zeng Z M 2014 Chin. Sci. Bull. 59 1804 (in Chinese) [方彬, 曾中明 2014 科学通报 59 1804]

    [8]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 60 017502]

    [9]

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427 (in Chinese) [张磊, 任敏, 胡九宁, 邓宁, 陈培毅 2008 57 2427]

    [10]

    Wang W G, Li M G, Hageman S, Chien C L 2012 Nature Mater. 11 64

    [11]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2009 Appl. Phys. Lett. 94 122508

    [12]

    Guo Z Z, Deng H D, Huang J S, Xiong W J, Xu C D 2014 Acta Phys. Sin. 63 138501 (in Chinese) [郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东 2014 63 138501]

    [13]

    Liu H F, Syed S A, Han X F 2014 Chin. Phys. B 23 077501

    [14]

    Chen X, Liu H F, Han X F, Ji Y 2013 Acta Phys. Sin. 62 137501 (in Chinese) [陈希, 刘厚方, 韩秀峰, 姬杨 2013 62 137501]

    [15]

    Yang J, Zhang X, Miao R D 2014 Acta Phys. Sin. 63 217202 (in Chinese) [杨军, 章曦, 苗仁德 2014 63 217202]

    [16]

    Xu P 2008 Nature Nanotech. 3 97

    [17]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266

    [18]

    Srinivasan S, Sarkar A, Behin-Aein B, Datta S 2011 IEEE Trans. Magn. 47 4026

    [19]

    Calayir V, Nikonov D E, Manipatruni S, Young I A 2014 IEEE Trans. Circuits Syst. I. Reg. Papers 61 393

    [20]

    Chang S C, Iraei R M, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Electron Dev. 61 2905

    [21]

    Chang S C, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Magn. 50 3400513

    [22]

    Behin-Aein B, Sarkar A, Srinivasan S, Datta S 2011 Appl. Phys. Lett. 98 123510

    [23]

    Roy K, Bandyopadhyay S, Atulasimha J 2012 J. Appl. Phys. 112 023914

    [24]

    Brataas A, Bauer G E W, Kelly P J 2006 Phys. Rep. 427 157

    [25]

    Manipatruni S, Nikonov D E, Young I A 2012 IEEE Trans. Circuits Syst. I. Reg. Papers 59 2801

    [26]

    Ji Y, Hoffmann A, Jiang J S, Pearson J E, Bader S D 2007 J. Phys. D: Appl. Phys. 40 1280

    [27]

    Bass J, William P P 2007 J. Phys.: Condens. Matter 19 183201

    [28]

    Trudel S, Gaier O, Hamrle J, Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 193001

    [29]

    Bonanni V, Bisero D, Vavassori P, Gubbiotti G, Madami M, Adeyeye A O, Goolaup S, Singh N, Ono T, Spezzani C 2009 J. Magn. Magn. Mater. 321 3038

    [30]

    Johnson M T, Jungblut R, Kelly P J, Broeder F J A 1995 J. Magn. Magn. Mater. 148 118

    [31]

    Lee S W, Lee K J 2010 IEEE Trans. Magn. 46 2349

    [32]

    Gradmann U, Elmers H J 1999 J. Magn. Magn. Mater. 206 L107

  • [1] 温丽, 卢卯旺, 陈嘉丽, 陈赛艳, 曹雪丽, 张安琪. 电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化.  , 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] 郭晓庆, 王强, 薛海斌. 类场矩诱导的可调零场自旋转移力矩纳米振荡器.  , 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [3] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转.  , 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [4] 印必还, 何姿, 丁大志. 基于旋转多普勒效应的自旋目标转速估计方法.  , 2023, 72(17): 174203. doi: 10.7498/aps.72.20230807
    [5] 贺豪斌, 兰修凯, 姬扬. 用BiSePt合金提高自旋轨道转矩效率.  , 2023, 72(13): 137201. doi: 10.7498/aps.72.20230285
    [6] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究.  , 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [7] 李重阳, 李梦德, 汪美, 李涛, 刘建党, 叶邦角, 陈志权. ZIFs纳米晶体中电子偶素的自旋转换.  , 2022, 71(15): 157801. doi: 10.7498/aps.71.20220305
    [8] 王一鹤, 张志旺, 程营, 刘晓峻. 声子晶体中的表面声波赝自旋模式和拓扑保护声传输.  , 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [9] 韩秀峰, 万蔡华. 一种数据非易失性、多功能和可编程的自旋逻辑研究进展.  , 2018, 67(12): 127201. doi: 10.7498/aps.67.20180906
    [10] 池明赫, 赵磊. 石墨烯纳米片磁有序和自旋逻辑器件第一原理研究.  , 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [11] 李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波. 石墨烯沟道全自旋逻辑器件开关特性.  , 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [12] 陈俊, 於亚飞, 张智明. 利用信息流方法优化多激发自旋链中的量子态传输.  , 2015, 64(16): 160305. doi: 10.7498/aps.64.160305
    [13] 郭园园, 蒿建龙, 薛海斌, 刘喆颉. 面内形状各向异性能对自旋转矩振荡器零场振荡特性的影响.  , 2015, 64(19): 198502. doi: 10.7498/aps.64.198502
    [14] 郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东. 应力调制的自旋转矩临界电流.  , 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [15] 郑勇林, 王晓茜, 葛泽玲, 郭红力, 严刚峰, 戴松晖, 朱晓玲, 田晓滨. 铁磁非铁磁夹层中电子自旋波的传输及应用.  , 2013, 62(22): 227701. doi: 10.7498/aps.62.227701
    [16] 李春, 张少斌, 金蔚, Georgios Lefkidis, Wolfgang Hübner. 线性磁性分子离子中由激光诱导的超快自旋转移.  , 2012, 61(17): 177502. doi: 10.7498/aps.61.177502
    [17] 金伟, 万振茂, 刘要稳. 自旋转移矩效应激发的非线性磁化动力学.  , 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [18] 严晓波, 王顺金. 由各向异性海森伯自旋环链组成的量子位及其通用量子逻辑门.  , 2006, 55(4): 1591-1595. doi: 10.7498/aps.55.1591
    [19] 易林, 姚凯伦. 自旋玻璃系统的量子输运方程.  , 1994, 43(6): 1024-1028. doi: 10.7498/aps.43.1024
    [20] 吴自玉, 汪克林. 弯曲时空的半整数自旋场方程.  , 1985, 34(5): 588-593. doi: 10.7498/aps.34.588
计量
  • 文章访问数:  6189
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-26
  • 修回日期:  2016-01-25
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map