搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢负离子在少周期激光场中解离时的干涉效应

陈建宏 郑小平 张正荣 吴学勇

引用本文:
Citation:

氢负离子在少周期激光场中解离时的干涉效应

陈建宏, 郑小平, 张正荣, 吴学勇

Interference effect in the photodetachment from H- ion in a few-cycle laser pulse

Chen Jian-Hong, Zheng Xiao-Ping, Zhang Zheng-Rong, Wu Xue-Yong
PDF
导出引用
  • 本文利用强场近似理论研究了氢负离子在少周期激光场中的解离过程. 在计算中采用了数值积分和鞍点近似两种计算方法并得到了一致的结果. 更为重要的是, 利用鞍点法对激光脉冲中不同时刻解离产生的电子波包之间的干涉效应进行了研究, 发现光电子动量谱的主要结构是电子波包间的周期间干涉和周期内干涉共同作用的结果, 并分析了周期内和周期间干涉效应对光电子能量谱的影响. 最后, 讨论了激光脉宽对周期内和周期间干涉效应的影响. 本文的工作对进一步了解负离子光解离过程中的量子干涉效应和利用光场对其进行调控方面的研究具有意义.
    We theoretically study the electron detachment of negative hydrogen ions in a three-cycle linearly polarized laser field with a wavelength of 2150 nm in the context of the strong field approximation (SFA). The numerical integration and the saddle-point (SP) methods are both used in our calculations. The results show that both the energy spectra and the momentum spectra of the photoelectrons detached from negative hydrogen ions, obtained from these two methods, accord very well with each other for the laser intensities of 1.31011 W/cm2 and 6.51011 W/cm2, respectively. It is found that there is an obvious stripe-like structure along the vertical direction of the momentum spectra when the laser intensity is 6.51011 W/cm2. To explore the main origin which leads to the specific structures of the momentum spectra, we divide the interferences of the electronic wave packets emitted at different times during the laser pulse into the intra-cycle interference and the inter-cycle interference based on the SP method. Inter-cycle interference arises from the coherent superposition of electron wave packets released at complex times during different optical cycles, whereas intra-cycle interference comes from the coherent superposition of electron packets released in the same optical cycle. It is found that when only considering the inter-cycle interference, the main structures of the momentum spectra accord well with the above-threshold detachment (ATD) rings, which indicates that the inter-cycle interference corresponds to ATD rings of the photoelectron spectrum. But when only considering the intra-cycle interference, there are stripe-like structures with left-right asymmetry along the vertical direction of the momentum spectra. So the main structures of the momentum spectra of the photoelectrons are attributed to the interplay of the intra-and inter-cycle interferences. In addition, to intuitively explain the reason why the momentum spectra depend on the intensity of the laser field, we analyze the influence of the intensity of the laser field on the inter-cycle interference of quantum wave packets. It is found that the phase difference of the inter-cycle interference depends on the intensity of the laser field, which may lead to the difference among the momentum spectra of the photoelectrons at different laser intensities. Moreover, the influences of the intra-and inter-cycle interferences on the energy spectrum of the photoelectrons are also analyzed. It is found that the main oscillatory patterns and the peak positions of the energy spectra are mainly determined by the inter-cycle interference. Finally, the effects of the duration of laser pulse on the intra-and inter-cycle interferences are discussed. It seems that the main structures of the momentum spectra accord well with the ATD rings in multi-cycle laser pulses. So it is concluded that in multi-cycle laser pulses, the inter-cycle interference dominates while the intra-cycle interference is suppressed. The work in this paper is meaningful for further understanding the quantum interference effect and the optical control of the laser-induced photodetachment of negative ions.
      通信作者: 陈建宏, chenyuwen1982@163.com
    • 基金项目: 国家自然科学基金(批准号: 11264036, 11465016, 11164012, 11464026)、兰州市科技计划(计划编号: 2012-2-105)和兰州城市学院博士科研启动基金资助课题.
      Corresponding author: Chen Jian-Hong, chenyuwen1982@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264036, 11465016, 11164012, 11464026), the Science and Technology Project of Lanzhou Science and Technology of Bureau, China (Grant No. 2012-2-105), and the Doctoral Scientific Research Foundation of Lanzhou City University, China.
    [1]

    Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117

    [2]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [3]

    DiMauro L F, Agostini P 1995 Adv. At. Mol. Opt. Phys. 35 79

    [4]

    Becker W, Grasbon F, Kopold R, Miloević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35

    [5]

    Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011

    [6]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127

    [7]

    Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D, Geusic M E 1987 Phys. Rev. Lett. 59 1092

    [8]

    Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum Press) pp367-369

    [9]

    Rudenko A, Zrost K, Schrter C D, Jesus V L B, Feuerstein B, Moshammer R, Ullrich J 2004 J. Phys. B 37 L407

    [10]

    Arbo D G, Yoshida S, Persson E, Dimitriou K I, Burgdorfer J 2006 Phys. Rev. Lett. 96 143003

    [11]

    Quan W, Lin Z. Z, Wu M Y, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [12]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010 Phys. Rev. Lett. 105 253002

    [13]

    Liu C P, Hatsagortsyan K Z 2010 Phys. Rev. Lett. 105 113003

    [14]

    Liu Y, Liu X, Deng Y, Wu C, Jiang H, Gong Q H 2010 Phys. Rev. Lett. 106 073004

    [15]

    Lin Z Y, Wu M Y, Quan W, Liu X J, Chen J, Cheng Y 2014 Chin. Phys. B 23 023201

    [16]

    Ye D F, Liu X, Liu J 2008 Phys. Rev. Lett. 101 233003

    [17]

    Xin G G, Ye D F, Zhao Q, Liu J 2011 Acta Phys. Sin. 60 093204 (in Chinese) [辛国国, 叶地发, 赵清, 刘杰 2011 60 093204]

    [18]

    Hao X L, Li W D, Liu J, Chen J 2012 Chin. Phys. B 21 083304

    [19]

    Lindner F, Schatzel M G, Walther H, Baltuka A, Goulielmakis E, Krausz F, Miloević D B, Bauer D, Becker W, Paulus G G 2005 Phys. Rev. Lett. 95 040401

    [20]

    Xie X, Roither S, Kartashov D, Persson E, Arb D G, Zhang L, Grfe S, Schffler M S, Burgdrfer J, Baltuka A, Kitzler M 2012 Phys. Rev. Lett. 108 193004

    [21]

    Gopal R, Simeonidis K, Moshammer R, Ergler T, Drr M, Kurka M, Khnel K U, Tschuch S, Schrter C D, Bauer D, Ullrich J, Rudenko A, Herrwerth O, Uphues T, Schultze M, Goulielmakis E, Uiberacker M, Lezius M, Kling M F 2009 Phys. Rev. Lett. 103 053001

    [22]

    Arbo D G, Ishikawa K L, Schiessl K, Persson E, Burgdorfer J 2010 Phys. Rev. A 81 021403

    [23]

    Guo Z J, Chen Z J, Zhou X X 2014 Chin. Phys. B 23 043201

    [24]

    Song L W, Li C, Wang D, Xu C H, Leng Y X, Li R X 2011 Acta Phys. Sin. 60 093204 (in Chinese) [宋立伟, 李闯, 王丁, 许灿华, 冷雨欣, 李儒新 2011 60 093204]

    [25]

    Ge Y C, He H P 2014 Chin. Phys. B 23 074207

    [26]

    Diao H H, Zheng Y H, Zhong Y, Zeng Z N, Ge X C, Li C, Li R X, Xu Z Z 2014 Chin. Phys. B 23 104210

    [27]

    Reichle R, Helm H, Kiyan I Y 2001 Phys. Rev. Lett. 87 243001

    [28]

    Kiyan I Y, Helm H 2003 Phys. Rev. Lett. 90 183001

    [29]

    Bergues B, Ansari Z, Hanstorp D, Kiyan I Y 2007 Phys. Rev. A 75 063415

    [30]

    Bergues B, Kiyan I Y 2008 Phys. Rev. Lett. 100 143004

    [31]

    Zhou X X, Chen Z J, Morishita T, Le A T, Lin C D 2008 Phys. Rev. A 77 053410

    [32]

    Gribakin G F, Kuchiev M Y 1997 Phys. Rev. A 55 3760

    [33]

    Shearer S F C, Smyth M C, Gribakin G F 2011 Phys. Rev. A 84 033409

    [34]

    Shearer S F C, Addis C R J 2012 Phys. Rev. A 85 063409

    [35]

    Shearer S F C, Monteith M R 2013 Phys. Rev. A 88 033415

    [36]

    Morishita T, Le A T, Chen Z J, Lin C D 2008 Phys. Rev. Lett. 100 013903

    [37]

    Huismans Y, Rouźee A, Gijsbertsen A, Logman P S W M, Lpine F, Cauchy C, Zamith S, Stodolna A S, Jungmann J H, Bakker J M, Berden G, Redlich B, van der Meer A F G, Schafer K J, Vrakking M J J 2013 Phys. Rev. A 87 033413

    [38]

    Landau L D, Lifshitz E M 1965 Quantum Mechanics. Nonrelativistic Theory (Oxford: Pergamon Press) pp297-299

    [39]

    Yan T M, Bauer D 2012 Phys. Rev. A 86 053403

    [40]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipe (3rd Ed.): The Art of Scientific Computing (London: Cambridge Press)

  • [1]

    Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117

    [2]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [3]

    DiMauro L F, Agostini P 1995 Adv. At. Mol. Opt. Phys. 35 79

    [4]

    Becker W, Grasbon F, Kopold R, Miloević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35

    [5]

    Becker W, Liu X J, Ho P J, Eberly J H 2012 Rev. Mod. Phys. 84 1011

    [6]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127

    [7]

    Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D, Geusic M E 1987 Phys. Rev. Lett. 59 1092

    [8]

    Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum Press) pp367-369

    [9]

    Rudenko A, Zrost K, Schrter C D, Jesus V L B, Feuerstein B, Moshammer R, Ullrich J 2004 J. Phys. B 37 L407

    [10]

    Arbo D G, Yoshida S, Persson E, Dimitriou K I, Burgdorfer J 2006 Phys. Rev. Lett. 96 143003

    [11]

    Quan W, Lin Z. Z, Wu M Y, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [12]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010 Phys. Rev. Lett. 105 253002

    [13]

    Liu C P, Hatsagortsyan K Z 2010 Phys. Rev. Lett. 105 113003

    [14]

    Liu Y, Liu X, Deng Y, Wu C, Jiang H, Gong Q H 2010 Phys. Rev. Lett. 106 073004

    [15]

    Lin Z Y, Wu M Y, Quan W, Liu X J, Chen J, Cheng Y 2014 Chin. Phys. B 23 023201

    [16]

    Ye D F, Liu X, Liu J 2008 Phys. Rev. Lett. 101 233003

    [17]

    Xin G G, Ye D F, Zhao Q, Liu J 2011 Acta Phys. Sin. 60 093204 (in Chinese) [辛国国, 叶地发, 赵清, 刘杰 2011 60 093204]

    [18]

    Hao X L, Li W D, Liu J, Chen J 2012 Chin. Phys. B 21 083304

    [19]

    Lindner F, Schatzel M G, Walther H, Baltuka A, Goulielmakis E, Krausz F, Miloević D B, Bauer D, Becker W, Paulus G G 2005 Phys. Rev. Lett. 95 040401

    [20]

    Xie X, Roither S, Kartashov D, Persson E, Arb D G, Zhang L, Grfe S, Schffler M S, Burgdrfer J, Baltuka A, Kitzler M 2012 Phys. Rev. Lett. 108 193004

    [21]

    Gopal R, Simeonidis K, Moshammer R, Ergler T, Drr M, Kurka M, Khnel K U, Tschuch S, Schrter C D, Bauer D, Ullrich J, Rudenko A, Herrwerth O, Uphues T, Schultze M, Goulielmakis E, Uiberacker M, Lezius M, Kling M F 2009 Phys. Rev. Lett. 103 053001

    [22]

    Arbo D G, Ishikawa K L, Schiessl K, Persson E, Burgdorfer J 2010 Phys. Rev. A 81 021403

    [23]

    Guo Z J, Chen Z J, Zhou X X 2014 Chin. Phys. B 23 043201

    [24]

    Song L W, Li C, Wang D, Xu C H, Leng Y X, Li R X 2011 Acta Phys. Sin. 60 093204 (in Chinese) [宋立伟, 李闯, 王丁, 许灿华, 冷雨欣, 李儒新 2011 60 093204]

    [25]

    Ge Y C, He H P 2014 Chin. Phys. B 23 074207

    [26]

    Diao H H, Zheng Y H, Zhong Y, Zeng Z N, Ge X C, Li C, Li R X, Xu Z Z 2014 Chin. Phys. B 23 104210

    [27]

    Reichle R, Helm H, Kiyan I Y 2001 Phys. Rev. Lett. 87 243001

    [28]

    Kiyan I Y, Helm H 2003 Phys. Rev. Lett. 90 183001

    [29]

    Bergues B, Ansari Z, Hanstorp D, Kiyan I Y 2007 Phys. Rev. A 75 063415

    [30]

    Bergues B, Kiyan I Y 2008 Phys. Rev. Lett. 100 143004

    [31]

    Zhou X X, Chen Z J, Morishita T, Le A T, Lin C D 2008 Phys. Rev. A 77 053410

    [32]

    Gribakin G F, Kuchiev M Y 1997 Phys. Rev. A 55 3760

    [33]

    Shearer S F C, Smyth M C, Gribakin G F 2011 Phys. Rev. A 84 033409

    [34]

    Shearer S F C, Addis C R J 2012 Phys. Rev. A 85 063409

    [35]

    Shearer S F C, Monteith M R 2013 Phys. Rev. A 88 033415

    [36]

    Morishita T, Le A T, Chen Z J, Lin C D 2008 Phys. Rev. Lett. 100 013903

    [37]

    Huismans Y, Rouźee A, Gijsbertsen A, Logman P S W M, Lpine F, Cauchy C, Zamith S, Stodolna A S, Jungmann J H, Bakker J M, Berden G, Redlich B, van der Meer A F G, Schafer K J, Vrakking M J J 2013 Phys. Rev. A 87 033413

    [38]

    Landau L D, Lifshitz E M 1965 Quantum Mechanics. Nonrelativistic Theory (Oxford: Pergamon Press) pp297-299

    [39]

    Yan T M, Bauer D 2012 Phys. Rev. A 86 053403

    [40]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipe (3rd Ed.): The Art of Scientific Computing (London: Cambridge Press)

  • [1] 薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红. 基于少模长周期光纤叠栅的模式转换器.  , 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [2] 王茹, 王向贤, 杨华, 叶松. TE0导模干涉刻写周期可调亚波长光栅理论研究.  , 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [3] 杨丹青, 王莉, 王新龙. 基于周期结构负反射的远场增强成像研究.  , 2015, 64(5): 054301. doi: 10.7498/aps.64.054301
    [4] 陈小军, 张自丽, 葛辉良. 四光束干涉单次曝光构造含平面缺陷三维周期性微纳结构.  , 2012, 61(17): 174211. doi: 10.7498/aps.61.174211
    [5] 杨盈莹, 张永亮, 赵震声, 段宣明. 双金属纳米天线在少周期激光中的宽带超快电磁响应.  , 2012, 61(1): 014207. doi: 10.7498/aps.61.014207
    [6] 杜海伟, 陈民, 张凯云, 盛政明, 张杰. 少周期激光脉冲与气体作用产生的离化电流和THz波辐射.  , 2012, 61(17): 174205. doi: 10.7498/aps.61.174205
    [7] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲.  , 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [8] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲.  , 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [9] 王姗姗, 王德华, 唐田田, 黄凯云. 激光脉冲对氢负离子在金属面附近光剥离的影响.  , 2011, 60(5): 053402. doi: 10.7498/aps.60.053402
    [10] 熊平新, 贾鑫, 贾天卿, 邓莉, 冯东海, 孙真荣, 徐至展. 三光束飞秒激光干涉在GaP,ZnSe表面诱导二维复合纳米-微米周期结构.  , 2010, 59(1): 311-316. doi: 10.7498/aps.59.311
    [11] 卢宏, 覃莉, 包景东. 周期场中非各态历经布朗运动.  , 2009, 58(12): 8127-8133. doi: 10.7498/aps.58.8127
    [12] 姚 尧, 方忠慧, 周 江, 李 伟, 马忠元, 徐 骏, 黄信凡, 陈坤基, 宫本恭幸, 小田俊理. 激光干涉结晶法制备一维周期结构的纳米硅阵列.  , 2008, 57(8): 4960-4965. doi: 10.7498/aps.57.4960
    [13] 张 鹏, 宋晏蓉, 张志刚. 周期量级激光脉冲的Thomson散射.  , 2006, 55(12): 6208-6213. doi: 10.7498/aps.55.6208
    [14] 李德生, 张鸿庆. 非线性耦合标量场方程的新双周期解(Ⅱ).  , 2003, 52(10): 2379-2385. doi: 10.7498/aps.52.2379
    [15] 方卯发, 刘翔. 驻波激光场中囚禁离子内外自由度的周期纠缠.  , 2001, 50(12): 2363-2368. doi: 10.7498/aps.50.2363
    [16] 程成, 孙威. 周期自洽的充氢溴化亚铜激光动力学模型.  , 1995, 44(11): 1734-1746. doi: 10.7498/aps.44.1734
    [17] 章豫梅. 周期场作用下自旋的主方程及其稳定态.  , 1993, 42(1): 118-127. doi: 10.7498/aps.42.118
    [18] 童林夙. 电子束在周期场中的稳定性.  , 1964, 20(8): 761-776. doi: 10.7498/aps.20.761
    [19] 陈鑑璞. 周期场透镜的成象特性.  , 1962, 18(10): 514-526. doi: 10.7498/aps.18.514
    [20] 何国柱. 周期场聚焦电子束.  , 1958, 14(5): 376-392. doi: 10.7498/aps.14.376
计量
  • 文章访问数:  6320
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-04
  • 修回日期:  2016-01-30
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map