搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义Birkhoff系统的两类广义梯度表示

李彦敏 陈向炜 吴惠彬 梅凤翔

引用本文:
Citation:

广义Birkhoff系统的两类广义梯度表示

李彦敏, 陈向炜, 吴惠彬, 梅凤翔

Two kinds of generalized gradient representations for generalized Birkhoff system

Li Yan-Min, Chen Xiang-Wei, Wu Hui-Bin, Mei Feng-Xiang
PDF
导出引用
  • 提出了两类广义梯度系统, 即广义斜梯度系统以及具有对称负定矩阵的广义梯度系统. 分别讨论了这两类梯度系统与动力学系统稳定性的关系. 研究了广义Brikhoff系统的两类广义梯度表示, 分别给出条件和表达式. 给出了广义Brikhoff系统稳定性的梯度判别法, 利用广义梯度系统的性质来研究广义Birkhoff系统的稳定性. 并举例说明了方法的应用.
    Brikhoff system is a kind of basic dynamical system. The theory and method of Brikhoff system dynamics have been applied to the hadron physics, quantum physics, relativity and rotational relativistic system. The properties of gradient system not only play an important role in revealing the internal structure of dynamical system, but also help to explore the dynamical behavior of the system. In this paper, two kinds of generalized gradient representations for generalized Birkhoff system are studied. First, two kinds of generalized gradient systems, i. e., the generalized skew gradient system and the generalized gradient system with symmetric negative definite matrix, are proposed and the characteristics of the systems are studied. Second, the relations of stability between these two kinds of gradient system and the dynamical system are discussed. Third, the condition under which a generalized Birkhoff system can be considered as one of the two generalized gradient systems is obtained. Fourth, the gradient discrimination method of stability of the generalized Brikhoff system is given, and the characteristics of the generalized gradient systems can be used to study the stability of the generalized Birkhoff system. Finally, some examples are given to illustrate the application of the result. Therefore, once the mechanical system is expressed as the generalized gradient system, the stability and the asymptotic stability can be conveniently studied by using the properties of generalized gradient system. The difficulty in constructing Lyapunov functions is avoided, and a convenient method of analyzing the stability of mechanical system is provided.
      通信作者: 陈向炜, hnchenxw@163.com
    • 基金项目: 国家自然科学基金(批准号: 10932002, 11372169, 11272050)资助的课题.
      Corresponding author: Chen Xiang-Wei, hnchenxw@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10932002, 11372169, 11272050).
    [1]

    Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer) pp182-191

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer) pp253-267

    [3]

    Hirsch M W, Smale S 1974 Differential Equations, Dynamical Systems, and Linear Algebra (New York: Academic Press) pp199-203

    [4]

    Mc Lachlan R I, Quispel G R W, Robidoux N 1999 Phil. Trans. R. Soc. Lond. A 357 1021

    [5]

    Mei F X, Wu H B 2012 J. Dynam. Control 10 289 (in Chinese) [梅凤翔, 吴惠彬 2012 动力学与控制学报 10 289]

    [6]

    Lou Z M, Mei F X 2012 Acta Phys. Sin. 61 024502 (in Chinese) [楼智美, 梅凤翔 2012 61 024502]

    [7]

    Hirsch M W, Smale S, Devaney R L 2008 Differential Equations, Dynamical Systems, and an Introduction to Chaos (Singapore: Elsevier) pp203-206

    [8]

    Mei F X, Cui J C, Wu H B 2012 Trans. Beijing Inst. Tech. 32 1298 (in Chinese) [梅凤翔, 崔金超, 吴惠彬 2012 北京理工大学学报 32 1298]

    [9]

    Tom B, Ralph C, Eva F 2012 Monatsh Math. 166 57

    [10]

    Mei F X, Wu H B 2013 Sci. Sin.: Phys. Mech. Astron. 43 538 (in Chinese) [梅凤翔, 吴惠彬 2013 中国科学: 物理学 力学 天文学 43 538]

    [11]

    Chen X W, Zhao G L, Mei F X 2013 Nonlinear Dyn. 73 579

    [12]

    Mei F X 2013 Analytical Mechanics II (Beijing: Beijing Inst. Tech. Press) pp564-581 (in Chinese) [梅凤翔 2013 分析力学II(北京: 北京理工大学出版社) 第 564-581 页]

    [13]

    Marin A M, Ortiz R D, Rodriguez J A 2013 International Mathematical Forum 8 803

    [14]

    Mei F X, Wu H B 2015 J. Dynam. Control 13 329 (in Chinese) [梅凤翔, 吴惠彬 2015 动力学与控制学报 13 329]

    [15]

    Yin X W, Li D S 2015 Acta Mathematica Scientia 35A 464 (in Chinese) [尹逊武, 李德生 2015 数学 35A 464]

    [16]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 104502

    [17]

    Wu H B, Mei F X 2015 Acta Phys. Sin. 64 234501 (in Chinese) [吴惠彬, 梅凤翔 2015 64 234501]

    [18]

    Zhang Y 2015 J. Suzhou Univ. Sci. Tech. (Natural Science) 32 1 (in Chinese) [张毅 2015 苏州科技学院学报(自然科学版) 32 1]

    [19]

    Mei F X, Wu H B 2015 Acta Phys. Sin. 64 184501 (in Chinese) [梅凤翔, 吴惠彬 2015 64 184501]

    [20]

    Li L, Luo S K 2013 Acta Mechanica 224 1757

    [21]

    Luo S K, He J M, Xu Y L 2016 Inter. J. Non-Linear Mech. 78 105

    [22]

    Mei F X 2013 Dynamics of Generalized Birkhoff Systems (Beijing: Science Press) pp31-36 (in Chinese) [梅凤翔 2013 广义Birkhoff系统动力学 (北京: 科学出版社) 第 31-36 页]

  • [1]

    Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer) pp182-191

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer) pp253-267

    [3]

    Hirsch M W, Smale S 1974 Differential Equations, Dynamical Systems, and Linear Algebra (New York: Academic Press) pp199-203

    [4]

    Mc Lachlan R I, Quispel G R W, Robidoux N 1999 Phil. Trans. R. Soc. Lond. A 357 1021

    [5]

    Mei F X, Wu H B 2012 J. Dynam. Control 10 289 (in Chinese) [梅凤翔, 吴惠彬 2012 动力学与控制学报 10 289]

    [6]

    Lou Z M, Mei F X 2012 Acta Phys. Sin. 61 024502 (in Chinese) [楼智美, 梅凤翔 2012 61 024502]

    [7]

    Hirsch M W, Smale S, Devaney R L 2008 Differential Equations, Dynamical Systems, and an Introduction to Chaos (Singapore: Elsevier) pp203-206

    [8]

    Mei F X, Cui J C, Wu H B 2012 Trans. Beijing Inst. Tech. 32 1298 (in Chinese) [梅凤翔, 崔金超, 吴惠彬 2012 北京理工大学学报 32 1298]

    [9]

    Tom B, Ralph C, Eva F 2012 Monatsh Math. 166 57

    [10]

    Mei F X, Wu H B 2013 Sci. Sin.: Phys. Mech. Astron. 43 538 (in Chinese) [梅凤翔, 吴惠彬 2013 中国科学: 物理学 力学 天文学 43 538]

    [11]

    Chen X W, Zhao G L, Mei F X 2013 Nonlinear Dyn. 73 579

    [12]

    Mei F X 2013 Analytical Mechanics II (Beijing: Beijing Inst. Tech. Press) pp564-581 (in Chinese) [梅凤翔 2013 分析力学II(北京: 北京理工大学出版社) 第 564-581 页]

    [13]

    Marin A M, Ortiz R D, Rodriguez J A 2013 International Mathematical Forum 8 803

    [14]

    Mei F X, Wu H B 2015 J. Dynam. Control 13 329 (in Chinese) [梅凤翔, 吴惠彬 2015 动力学与控制学报 13 329]

    [15]

    Yin X W, Li D S 2015 Acta Mathematica Scientia 35A 464 (in Chinese) [尹逊武, 李德生 2015 数学 35A 464]

    [16]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 104502

    [17]

    Wu H B, Mei F X 2015 Acta Phys. Sin. 64 234501 (in Chinese) [吴惠彬, 梅凤翔 2015 64 234501]

    [18]

    Zhang Y 2015 J. Suzhou Univ. Sci. Tech. (Natural Science) 32 1 (in Chinese) [张毅 2015 苏州科技学院学报(自然科学版) 32 1]

    [19]

    Mei F X, Wu H B 2015 Acta Phys. Sin. 64 184501 (in Chinese) [梅凤翔, 吴惠彬 2015 64 184501]

    [20]

    Li L, Luo S K 2013 Acta Mechanica 224 1757

    [21]

    Luo S K, He J M, Xu Y L 2016 Inter. J. Non-Linear Mech. 78 105

    [22]

    Mei F X 2013 Dynamics of Generalized Birkhoff Systems (Beijing: Science Press) pp31-36 (in Chinese) [梅凤翔 2013 广义Birkhoff系统动力学 (北京: 科学出版社) 第 31-36 页]

  • [1] 王海峰, 李旺, 顾国彪, 沈俊, 滕启治. 风力发电机自循环蒸发内冷系统稳定性的研究.  , 2016, 65(3): 030501. doi: 10.7498/aps.65.030501
    [2] 梅凤翔, 吴惠彬. 广义Birkhoff系统与一类组合梯度系统.  , 2015, 64(18): 184501. doi: 10.7498/aps.64.184501
    [3] 葛伟宽, 薛纭, 楼智美. 完整力学系统的广义梯度表示.  , 2014, 63(11): 110202. doi: 10.7498/aps.63.110202
    [4] 葛伟宽, 张毅, 楼智美. 一类广义Birkhoff系统的无限小正则变换与积分.  , 2012, 61(14): 140204. doi: 10.7498/aps.61.140204
    [5] 黄丽莲, 何少杰. 分数阶状态空间系统的稳定性分析及其在分数阶混沌控制中的应用.  , 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [6] 唐春森, 孙跃, 戴欣, 王智慧, 苏玉刚, 呼爱国. 感应电能传输系统多谐振点及其自治振荡稳定性分析.  , 2011, 60(4): 048401. doi: 10.7498/aps.60.048401
    [7] 陈海军, 李高清, 薛具奎. 变分法研究一维Bose-Fermi系统的稳定性.  , 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.1
    [8] 刘浩然, 朱占龙, 时培明. 一类相对转动时滞非线性动力系统的稳定性分析.  , 2010, 59(10): 6770-6777. doi: 10.7498/aps.59.6770
    [9] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性.  , 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [10] 何学军, 张良欣, 任爱娣. 横向补给系统高架索的稳定性与分岔研究.  , 2010, 59(5): 3088-3092. doi: 10.7498/aps.59.3088
    [11] 李彦敏, 梅凤翔. 广义Birkhoff方程的积分方法.  , 2010, 59(9): 5930-5933. doi: 10.7498/aps.59.5930
    [12] 李彦敏, 梅凤翔. 一类广义Birkhoff系统的广义正则变换.  , 2010, 59(8): 5219-5222. doi: 10.7498/aps.59.5219
    [13] 王传东, 刘世兴, 梅凤翔. 广义Pfaff-Birkhoff-d’Alembert原理与广义Birkhoff系统的形式不变性.  , 2010, 59(12): 8322-8325. doi: 10.7498/aps.59.8322
    [14] 张毅. 自治广义Birkhoff系统的平衡稳定性.  , 2010, 59(1): 20-24. doi: 10.7498/aps.59.20
    [15] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解.  , 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [16] 葛伟宽, 梅凤翔. 广义Birkhoff系统的时间积分定理.  , 2009, 58(2): 699-702. doi: 10.7498/aps.58.699
    [17] 张毅. 广义Birkhoff系统的Birkhoff对称性与守恒量.  , 2009, 58(11): 7436-7439. doi: 10.7498/aps.58.7436
    [18] 梅凤翔, 解加芳, 冮铁强. 广义Birkhoff系统动力学的一类逆问题.  , 2008, 57(8): 4649-4651. doi: 10.7498/aps.57.4649
    [19] 时培明, 刘 彬, 刘 爽. 一类谐波激励相对转动非线性动力系统的稳定性与近似解.  , 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [20] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性.  , 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
计量
  • 文章访问数:  6573
  • PDF下载量:  390
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-11
  • 修回日期:  2016-01-06
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map