搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类广义Birkhoff系统的广义正则变换

李彦敏 梅凤翔

引用本文:
Citation:

一类广义Birkhoff系统的广义正则变换

李彦敏, 梅凤翔

Generalized canonical transformations of a kind of generalized Birkhoff systems

Li Yan-Min, Mei Feng-Xiang
PDF
导出引用
  • 研究一类广义Birkhoff系统的广义正则变换. 建立这类广义Birkhoff系统的运动微分方程, 得到了该系统的广义正则变换以及保持广义正则变换的条件. 最后, 举例说明结果的应用.
    The generalized canonical transformations of a kind of generalized Birkhoff systems are studied in this paper. The differential equations of motion of the generalized Birkhoff systems are estallished. The condition under which the transformations of the system are canonical is obtained. An example is given to illustrate the application of the result.
    • 基金项目: 国家自然科学基金(批准号: 10772025, 10932002, 10972127),河南省自然科学基金(批准号: 082300410330,082300410370,102300410144)资助的课题.
    [1]

    Santilli R M 1978 Foundations of theoretical mechanicsⅠ(New York: Springer Verlag)

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics Ⅱ (New York: Springer Verlag)

    [3]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoff Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔、史荣昌、张永发、吴惠彬 1996 Birkhoff系统动力学 (北京: 北京理工大学出版社)]

    [4]

    Zhang H B 2001 Acta Phys. Sin. 50 1837(in Chinese)[张宏彬 2001 50 1837]

    [5]

    Guo Y X, Luo S K, Shang M 2001 Rep. Math. Phys. 47 313

    [6]

    Luo S K, Lu Y B, Zhou Q, Wang Y D, Ou Y S 2002 Acta Phys. Sin. 51 1913(in Chinese)[罗绍凯、卢一兵、周 强、王应德、欧阳实2002 51 1913]

    [7]

    Shang M, Guo Y X, Mei F X 2007 Chin. Phys. 16 292

    [8]

    Ge W K, Mei F X 2007 Acta Phys. Sin. 56 2476(in Chinese)[葛伟宽、梅凤翔2007 56 2479]

    [9]

    Mei F X, Gang T Q, Xie J F 2006 Chin. Phys. 15 1678

    [10]

    Fu J L, Chen L Q, Luo S K, Chen X W, Wang X M 2001 Acta Phys. Sin. 50 2289(in Chinese)[傅景礼、陈立群、罗绍凯、陈向炜、王新民 2001 50 2289]

    [11]

    Zhang Y 2008 Acta Phys. Sin. 57 5374(in Chinese)[张 毅2008 57 5374]

    [12]

    Gu S L, Zhang H B 2004 Chin. Phys. 13 979

    [13]

    Ding N, Fang J H, Chen X X 2008 Chin. Phys. B 17 1967

    [14]

    Chen X W, Zhang R C, Mei F X 2000 Acta Mech. Sin. 16 282

    [15]

    Chen X W, Mei F X 2000 Mechanics Research Communications 27 365

    [16]

    Chen X W 2002 Chin. Phys. 11 441

    [17]

    Li Y M 2008 J. of Henan Normal University 36 52[李彦敏2008河南师范大学学报(自然科学版) 36 52]

    [18]

    Wang P, Fang J H, Wang X M 2009 Chin. Phys. B 18 1312

    [19]

    Ding G T 2009 Acta Phys. Sin. 58 7431(in Chinese) [丁光涛 2009 58 7431]

    [20]

    Mei F X 1993 Science in China Serie A 36 1456

    [21]

    Mei F X, Zhang Y F, He G 2007 J Beijing Inst. Technol. 27 1035 (in Chinese) [梅凤翔、张永发、何 光 2007 北京理工大学学报 27 1035]

    [22]

    Mei F X, Xie J F, Gang T Q 2008 Acta Phys. Sin. 57 4649 (in Chinese) [梅凤翔、谢加芳、冮铁强 2008 57 4649]

    [23]

    Mei F X, Cai J L 2008 Acta Phys. Sin. 57 4657(in Chinese) [梅凤翔、蔡建乐2008 57 4657]

    [24]

    Shang M, Mei F X 2009 Chin. Phys. B 18 3155

    [25]

    Ge W K, Mei F X 2009 Acta Phys. Sin. 58 699 (in Chinese) [葛伟宽、梅凤翔2009 58 699]

    [26]

    Zhang Y 2009 Acta Phys. Sin. 58 7436(in Chinese)[张 毅 2009 58 7436]

    [27]

    Mei F X, Liu D, Luo Y 1991 Advanced analytical mechanics (Beijing: Beijing Institute of Technology Press)p333(in Chinese)[梅凤翔、刘 端、罗 勇 1991 高等分析力学(北京: 北京理工大学出版社)第333页]

    [28]

    Whittaker E T 1937 A Treatise on Analytical Dynamics of Particles and Rigid Bodies, Fouth Ed (Cambridge: Cambridge Univ Press)

    [29]

    Lurie A I 1961 Analyltical Mechanics (Moscow: GIFML) (in Russian)

    [30]

    José J V, Saletan E J 1998 Classical Dynanmics (New York: Cambridge vniv Press)

    [31]

    Papastavridis J G 2002 Analyltical Mechanics (New York: Oxford vniv Press)

    [32]

    Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M 1997 Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems (Moscow:UFN) P183(in Russian)

  • [1]

    Santilli R M 1978 Foundations of theoretical mechanicsⅠ(New York: Springer Verlag)

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics Ⅱ (New York: Springer Verlag)

    [3]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoff Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔、史荣昌、张永发、吴惠彬 1996 Birkhoff系统动力学 (北京: 北京理工大学出版社)]

    [4]

    Zhang H B 2001 Acta Phys. Sin. 50 1837(in Chinese)[张宏彬 2001 50 1837]

    [5]

    Guo Y X, Luo S K, Shang M 2001 Rep. Math. Phys. 47 313

    [6]

    Luo S K, Lu Y B, Zhou Q, Wang Y D, Ou Y S 2002 Acta Phys. Sin. 51 1913(in Chinese)[罗绍凯、卢一兵、周 强、王应德、欧阳实2002 51 1913]

    [7]

    Shang M, Guo Y X, Mei F X 2007 Chin. Phys. 16 292

    [8]

    Ge W K, Mei F X 2007 Acta Phys. Sin. 56 2476(in Chinese)[葛伟宽、梅凤翔2007 56 2479]

    [9]

    Mei F X, Gang T Q, Xie J F 2006 Chin. Phys. 15 1678

    [10]

    Fu J L, Chen L Q, Luo S K, Chen X W, Wang X M 2001 Acta Phys. Sin. 50 2289(in Chinese)[傅景礼、陈立群、罗绍凯、陈向炜、王新民 2001 50 2289]

    [11]

    Zhang Y 2008 Acta Phys. Sin. 57 5374(in Chinese)[张 毅2008 57 5374]

    [12]

    Gu S L, Zhang H B 2004 Chin. Phys. 13 979

    [13]

    Ding N, Fang J H, Chen X X 2008 Chin. Phys. B 17 1967

    [14]

    Chen X W, Zhang R C, Mei F X 2000 Acta Mech. Sin. 16 282

    [15]

    Chen X W, Mei F X 2000 Mechanics Research Communications 27 365

    [16]

    Chen X W 2002 Chin. Phys. 11 441

    [17]

    Li Y M 2008 J. of Henan Normal University 36 52[李彦敏2008河南师范大学学报(自然科学版) 36 52]

    [18]

    Wang P, Fang J H, Wang X M 2009 Chin. Phys. B 18 1312

    [19]

    Ding G T 2009 Acta Phys. Sin. 58 7431(in Chinese) [丁光涛 2009 58 7431]

    [20]

    Mei F X 1993 Science in China Serie A 36 1456

    [21]

    Mei F X, Zhang Y F, He G 2007 J Beijing Inst. Technol. 27 1035 (in Chinese) [梅凤翔、张永发、何 光 2007 北京理工大学学报 27 1035]

    [22]

    Mei F X, Xie J F, Gang T Q 2008 Acta Phys. Sin. 57 4649 (in Chinese) [梅凤翔、谢加芳、冮铁强 2008 57 4649]

    [23]

    Mei F X, Cai J L 2008 Acta Phys. Sin. 57 4657(in Chinese) [梅凤翔、蔡建乐2008 57 4657]

    [24]

    Shang M, Mei F X 2009 Chin. Phys. B 18 3155

    [25]

    Ge W K, Mei F X 2009 Acta Phys. Sin. 58 699 (in Chinese) [葛伟宽、梅凤翔2009 58 699]

    [26]

    Zhang Y 2009 Acta Phys. Sin. 58 7436(in Chinese)[张 毅 2009 58 7436]

    [27]

    Mei F X, Liu D, Luo Y 1991 Advanced analytical mechanics (Beijing: Beijing Institute of Technology Press)p333(in Chinese)[梅凤翔、刘 端、罗 勇 1991 高等分析力学(北京: 北京理工大学出版社)第333页]

    [28]

    Whittaker E T 1937 A Treatise on Analytical Dynamics of Particles and Rigid Bodies, Fouth Ed (Cambridge: Cambridge Univ Press)

    [29]

    Lurie A I 1961 Analyltical Mechanics (Moscow: GIFML) (in Russian)

    [30]

    José J V, Saletan E J 1998 Classical Dynanmics (New York: Cambridge vniv Press)

    [31]

    Papastavridis J G 2002 Analyltical Mechanics (New York: Oxford vniv Press)

    [32]

    Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M 1997 Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems (Moscow:UFN) P183(in Russian)

  • [1] 李彦敏, 陈向炜, 吴惠彬, 梅凤翔. 广义Birkhoff系统的两类广义梯度表示.  , 2016, 65(8): 080201. doi: 10.7498/aps.65.080201
    [2] 梅凤翔, 吴惠彬. 广义Birkhoff系统与一类组合梯度系统.  , 2015, 64(18): 184501. doi: 10.7498/aps.64.184501
    [3] 季袁冬, 张路, 罗懋康. 幂函数型单势阱随机振动系统的广义随机共振.  , 2014, 63(16): 164302. doi: 10.7498/aps.63.164302
    [4] 徐贤胜, 郭鹏, 洪振杰, 吴江飞. GPS/LEO掩星正则变换反演方法.  , 2013, 62(7): 079201. doi: 10.7498/aps.62.079201
    [5] 崔金超, 赵喆, 郭永新. 构造Birkhoff表示的广义Hojman方法.  , 2013, 62(9): 090205. doi: 10.7498/aps.62.090205
    [6] 张国基, 李璇, 刘清, 张夏衍. 基于广义信息域离散轨迹变换的随机数生成器.  , 2012, 61(6): 060502. doi: 10.7498/aps.61.060502
    [7] 解加芳, 庞硕, 邹杰涛, 李国富. 非完整系统Boltzmann-Hamel方程的Birkhoff化及其广义辛算法.  , 2012, 61(23): 230201. doi: 10.7498/aps.61.230201
    [8] 葛伟宽, 张毅, 楼智美. 一类广义Birkhoff系统的无限小正则变换与积分.  , 2012, 61(14): 140204. doi: 10.7498/aps.61.140204
    [9] 刘文龙, 庞双杰, 张继峰. Hnon混沌系统广义预测函数控制快速收敛算法.  , 2011, 60(11): 110505. doi: 10.7498/aps.60.110505
    [10] 丁光涛. 构造准正则变换的方法.  , 2011, 60(4): 044502. doi: 10.7498/aps.60.044502
    [11] 葛伟宽, 张毅. 广义Birkhoff系统的一类积分.  , 2011, 60(5): 050202. doi: 10.7498/aps.60.050202
    [12] 李广成, 陈雷明, 王东晓, 武大勇. 广义Birkhoff自治系统平衡状态的流形稳定性.  , 2010, 59(5): 2932-2934. doi: 10.7498/aps.59.2932
    [13] 李彦敏, 梅凤翔. 广义Birkhoff方程的积分方法.  , 2010, 59(9): 5930-5933. doi: 10.7498/aps.59.5930
    [14] 张毅. 自治广义Birkhoff系统的平衡稳定性.  , 2010, 59(1): 20-24. doi: 10.7498/aps.59.20
    [15] 王传东, 刘世兴, 梅凤翔. 广义Pfaff-Birkhoff-d’Alembert原理与广义Birkhoff系统的形式不变性.  , 2010, 59(12): 8322-8325. doi: 10.7498/aps.59.8322
    [16] 葛伟宽, 梅凤翔. 广义Birkhoff系统的时间积分定理.  , 2009, 58(2): 699-702. doi: 10.7498/aps.58.699
    [17] 张毅. 广义Birkhoff系统的Birkhoff对称性与守恒量.  , 2009, 58(11): 7436-7439. doi: 10.7498/aps.58.7436
    [18] 梅凤翔, 蔡建乐. 广义Birkhoff系统的积分不变量.  , 2008, 57(8): 4657-4659. doi: 10.7498/aps.57.4657
    [19] 梅凤翔, 解加芳, 冮铁强. 广义Birkhoff系统动力学的一类逆问题.  , 2008, 57(8): 4649-4651. doi: 10.7498/aps.57.4649
    [20] 廖波, 薛郁, 陈光旨. N体随机凝聚过程中集团分布的长时渐近行为.  , 2002, 51(2): 215-219. doi: 10.7498/aps.51.215
计量
  • 文章访问数:  8297
  • PDF下载量:  907
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-26
  • 修回日期:  2010-01-05
  • 刊出日期:  2010-04-05

/

返回文章
返回
Baidu
map