-
研究了不同载荷作用下Tb0.3Dy0.7Fe2合金在压磁和磁弹性效应中磁畴偏转的滞回特性. 基于Stoner-Wolhfarth模型的能量极小原理, 采用绘制自由能-磁畴偏转角度关系曲线的求解方法, 研究了压磁和磁弹性效应中载荷作用下的磁畴角度偏转和磁化过程, 计算分析了不同载荷作用下磁畴偏转的滞回特性. 研究表明, 压磁和磁弹性效应中磁畴偏转均存在明显的滞回、跃迁效应, 其中磁化强度的滞回效应来源于磁畴偏转的角度跃迁; 压磁效应中预加磁场的施加将增大磁化强度的滞回, 同时使滞回曲线向大压应力方向偏移; 磁弹性效应中磁畴偏转的滞回存在两个临界磁场强度, 不同磁场强度下合金具有不同的磁畴偏转路径和磁化滞回曲线, 临界磁场强度的大小取决于预压应力的施加. 理论分析对类磁致伸缩材料磁畴偏转模型的完善和材料器件的设计应用非常有意义.
-
关键词:
- Tb0.3Dy0.7Fe2合金 /
- 各向异性 /
- 磁畴偏转 /
- 滞回特性
In this paper, the rotation effects of magnetic domain with different pre-compressive stress and basic magnetic field in the Tb0.3Dy0.7Fe2 alloy have been studied, the curves of magnetization induced by the rotation of magnetic domains are calculated, and the hysteresis characteristics of magnetization in the process of piezomagnetic and magnetoelastic effects are summarized. Based on the minimal value principle of three-dimensional Stoner-Wolhfarth (S-W) model, the total free energy of magnetostrictive particles (including magneto-crystal line anisotropy energy, stress-induced anisotropy energy, and magnetic field energy) is calculated, the curve of free energy is plotted as a function of domain rotation angle for various compressive stresses and magnetic fields. Then, the values of rotation angle for the magnetic domains in the eight easy axial directions 111 are given, and the summation values of magnetization induced by the rotations of magnetic domain angle are analyzed, the hysteresis characteristics and the hysteresis loops of magnetic domain rotations are calculated and discussed. All the above results indicate that the rotations of magnetic domains in the TbDyFe alloy have hysteresis and transition effects in its piezomagnetic and magnetoelastic processes, and the hysteresis effect of magnetization is always induced by the irreversible transitions of domain angle rotation. Due to the load of magnetic field and compressive stress, the angle of the eight easy axial domains 111 will rotate to the more suitable free energy directions, the reversible and irreversible transitions of domain rotation appear in this rotation, and irreversible transition will induce a larger value of changes in the magnetization existing as a hysteresis loop. Also, In the piezomagnetic effect, magnetization hysteresis loop appears with the load of basic magnetic field, and the increase of magnetic field will help to enhance its hysteresis loop and lead to the hysteresis curve deflected toward the greater compressive stress direction. Thirdly, the hysteresis effects of magnetic domain rotation have two important critical magnetic fields in the magnetoelastic process: the magnetostrictive materials will have different domain rotation paths and hysteresis curve in different basic magnetic fields, and the value of critical field will be influenced by the load of pre-compressive stress. Lastly, the experimental testing is used to verify the model and calculations, and the test results of magnetic remanence are in good agreement with the calculated results, especially in the larger values of pre-compressive stress loads. The above computations have a significance for perfecting magnetic domain deflection model and the results are helpful for designing and analyzing of magnetosrictive materials in application.-
Keywords:
- Tb0.3Dy0.7Fe2 alloy /
- anisotropy /
- domain deflection /
- hysteresis characteristics
[1] Eason G, Noble B, Sneddon I N 2000 Sensors and Actuators 81 275
[2] Bottauscio O, Roccato P E, Zucca M 2010 IEEE Trans. Magn. 46 3022
[3] Zucca M, Roccato P E, Bottauscio O, Beatrice C 2010 IEEE Trans. Magn. 46 183
[4] Grunwald A, Olabi A G 2008 Sensors and Actuators A 144 161
[5] Karunanidhi S, Singaperumal M 2010 Sensors and Actuators A 157 185
[6] Davino D, Giustiniani A, Visone C 2010 IEEE Trans. Magn. 46 646
[7] Cullity B D, Graham C D 2009 Introduction to Magnetic Materials (New Jersey: Wiley) p258
[8] Zheng L, Jiang C B, Shang J X, Xu H B 2009 Chin. Phys. B 18 1647
[9] Wang Z B, Liu J H, Jiang C B 2010 Chin. Phys. B 19 117504
[10] Clark A E, Yoo J H, Cullen J R, Fogle M W, Petculescu G, Flatau A 2009 J. Appl. Phys. 105 07A913
[11] Yan J C, Xie X Q, Yang S Q, He S Y 2001 J. Magn. Magn. Mater. 223 27
[12] Mei W, Umeda T, Zhou S, Wang R 1997 J. Alloys Compd. 248 151
[13] Liu J H, Wang Z B, Jiang C B, Xu H B 2010 J. Appl. Phys. 108 033913
[14] Chen Y H, Jiles D C 2001 IEEE Trans. Magn. 37 3069
[15] Clark A E, Savege H T, Spano M L 1984 IEEE Trans. Magn. 20 1443
[16] Jiles D C, Thoelke J B 1994 J. Magn. Mater. 134 143
[17] Zhang H, Zeng D C 2010 Atca Phys. Sin. 59 2808 (in Chinese) [张辉, 曾德长 2010 59 2808]
[18] Zhang H, Zeng D C, Liu Z W 2011 Atca Phys. Sin. 60 067503 (in Chinese) [张辉, 曾德长, 刘仲武 2011 60 067503]
[19] Zhang H, Zeng D C 2010 J. Appl. Phys. 107 123918
[20] Li L Y, Yan B P, Zhang C M, Cao J W 2012 Atca Phys. Sin. 61 167506 (in Chinese) [李立毅, 严柏平, 张成明, 曹继伟 2012 61 167506]
[21] Stoner E C, Wohifarth E P 1948 Philos. Trans. Roy. Soc. London. A 240 599
[22] Mei W, Okane T, Umeda T 1998 J. Appl. Phys. 84 6208
[23] Armstrong W D 2002 J. Inter. Mater. Syst. Struct. 13 137
[24] Armstrong W D 1997 J. Appl. Phys. 81 3548
[25] Zhao X G, Lord D G 1998 J. Appl. Phys. 83 7276
[26] Zhang H 2011 Appl. Phys. Lett. 98 232505
-
[1] Eason G, Noble B, Sneddon I N 2000 Sensors and Actuators 81 275
[2] Bottauscio O, Roccato P E, Zucca M 2010 IEEE Trans. Magn. 46 3022
[3] Zucca M, Roccato P E, Bottauscio O, Beatrice C 2010 IEEE Trans. Magn. 46 183
[4] Grunwald A, Olabi A G 2008 Sensors and Actuators A 144 161
[5] Karunanidhi S, Singaperumal M 2010 Sensors and Actuators A 157 185
[6] Davino D, Giustiniani A, Visone C 2010 IEEE Trans. Magn. 46 646
[7] Cullity B D, Graham C D 2009 Introduction to Magnetic Materials (New Jersey: Wiley) p258
[8] Zheng L, Jiang C B, Shang J X, Xu H B 2009 Chin. Phys. B 18 1647
[9] Wang Z B, Liu J H, Jiang C B 2010 Chin. Phys. B 19 117504
[10] Clark A E, Yoo J H, Cullen J R, Fogle M W, Petculescu G, Flatau A 2009 J. Appl. Phys. 105 07A913
[11] Yan J C, Xie X Q, Yang S Q, He S Y 2001 J. Magn. Magn. Mater. 223 27
[12] Mei W, Umeda T, Zhou S, Wang R 1997 J. Alloys Compd. 248 151
[13] Liu J H, Wang Z B, Jiang C B, Xu H B 2010 J. Appl. Phys. 108 033913
[14] Chen Y H, Jiles D C 2001 IEEE Trans. Magn. 37 3069
[15] Clark A E, Savege H T, Spano M L 1984 IEEE Trans. Magn. 20 1443
[16] Jiles D C, Thoelke J B 1994 J. Magn. Mater. 134 143
[17] Zhang H, Zeng D C 2010 Atca Phys. Sin. 59 2808 (in Chinese) [张辉, 曾德长 2010 59 2808]
[18] Zhang H, Zeng D C, Liu Z W 2011 Atca Phys. Sin. 60 067503 (in Chinese) [张辉, 曾德长, 刘仲武 2011 60 067503]
[19] Zhang H, Zeng D C 2010 J. Appl. Phys. 107 123918
[20] Li L Y, Yan B P, Zhang C M, Cao J W 2012 Atca Phys. Sin. 61 167506 (in Chinese) [李立毅, 严柏平, 张成明, 曹继伟 2012 61 167506]
[21] Stoner E C, Wohifarth E P 1948 Philos. Trans. Roy. Soc. London. A 240 599
[22] Mei W, Okane T, Umeda T 1998 J. Appl. Phys. 84 6208
[23] Armstrong W D 2002 J. Inter. Mater. Syst. Struct. 13 137
[24] Armstrong W D 1997 J. Appl. Phys. 81 3548
[25] Zhao X G, Lord D G 1998 J. Appl. Phys. 83 7276
[26] Zhang H 2011 Appl. Phys. Lett. 98 232505
计量
- 文章访问数: 5999
- PDF下载量: 189
- 被引次数: 0