搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下掩埋目标的散射声场计算与实验

胡珍 范军 张培珍 吴玉双

引用本文:
Citation:

水下掩埋目标的散射声场计算与实验

胡珍, 范军, 张培珍, 吴玉双

Acoustic scattering from elastic target buried in water-sand sediment

Hu Zhen, Fan Jun, Zhang Pei-Zhen, Wu Yu-Shuang
PDF
导出引用
  • 水下掩埋目标声散射问题是识别和探测掩埋目标的理论基础, 是声散射研究领域的热点问题. 本文基于射线声学推导了掩埋情况下目标声散射计算的格林函数近似式, 并在此基础上进一步给出了相应的远场积分公式. 在有限元方法的基础上, 将推导得到的公式写入有限元仿真软件, 对软件功能进行拓展, 构建二维轴对称目标的声散射模型, 并计算掩埋情况下弹性实心球在不同条件下的目标强度, 获得了其散射声场随频率、掩埋深度、沙层吸收系数等参数的变化规律. 开展实心球的自由空间和浅掩埋条件下水池声散射实验, 利用共振隔离技术处理实验数据, 提取目标声散射的纯弹性共振特征进行分析, 结果表明可将其用于掩埋目标识别和探测. 最后利用总散射声场与理论计算结果进行对比, 验证了理论仿真的正确性.
    Acoustic scattering from objects buried in water-sand sediment is the foundation of target detection and identification. It is also a research hotspot in areas of acoustic scattering while the domestic research on scattered field from buried targets is not deep. This paper deduces an approximate Green's function of acoustic scattering from targets buried in water-sand sediment, which describes clearly the whole physical process during the propagation of scattered waves. Next, on basis of geometric acoustics, the corresponding Helmholtz-Kirchhoff formula of integration is presented. Complicated integration of the full wave number spectral representation of the Green's function is avoided by employing approximate formula derived from the method of ray acoustics. As a result of neglecting the influence from lateral waves, the Helmholtz-Kirchhoff integral given applies to supercritical incidence case. The function of COMSOL Multiphysics software is expanded by writing this formula of integration into it. By means of finite-element method, numerical calculation models for two-dimensional axisymmetric targets are established on the software platform. The proposed model built in free field is verified through comparing numerical results obtained with the Rayleigh method which has been validated in previous research achievements of acoustics. The target strength of buried elastic solid sphere is calculated under different conditions in order to analyze the change regularity of buried scattered field. We provide a summary about the law of target strength of the elastic sphere varying with frequency, buried depth, and the attenuation of sand. Finally, we conduct acoustic scattering experiments in free space and shallow buried conditions and process the data with the method of isolation and identification of resonance to separate eliastic echoes from reverberation echo and specular echo. Results from the experiment of free field show that components of the scattered wave should include Rayleigh waves and whispering gallery waves. The processed data of objects buried inside layered fluid media indicate that characteristics of resonance spectra can be used to identify and detect the target effectively while echo signal is not available for identification of target. The proposed technique is verified through the comparison of data from total scattered field between experiment and theoretical prediction. This study has important guiding significance for detecting and identifying targets embedded within layered acoustic media in practical applications.
      通信作者: 范军, fanjun@sjtu.edu.cn
      Corresponding author: Fan Jun, fanjun@sjtu.edu.cn
    [1]

    Tang W L, Fan J 1999 Acta Acustca 24 174 (in Chinese) [汤渭霖, 范军 1999 声学学报 24 174]

    [2]

    Zhuo L K, Fan J, Tang W L 2007 Acta Acustca 32 411 (in Chinese) [卓琳凯, 范军, 汤渭霖 2007 声学学报 32 411]

    [3]

    Pan A, Fan J, Wang B, Chen Z G, Zheng G Y 2014 Acta Phys. Sin. 63 214301 (in Chinese) [潘安, 范军, 王斌, 陈志刚, 郑国垠 2014 63 214301]

    [4]

    Zampolli M, Jensen F B, Tesei A 2009 J. Acoust. Soc. Am 125 89

    [5]

    Zampolli M, Tesei A, Canepa G, Godin O A 2008 J. Acoust. Soc. Am 123 4051

    [6]

    Dcultot D, Litard R, Maze G 2010 J. Acoust. Soc. Am 127 1328

    [7]

    Xia Z, Li X K 2015 Acta Phys. Sin. 64 94302 (in Chinese) [夏峙, 李秀坤 2015 64 94302]

    [8]

    Maze G 1991 J. Acoust. Soc. Am. 89 2559

    [9]

    Lu D 2014 M. S. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [卢笛 2014 硕士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [10]

    Brekhovskikh L M (translated by Yang X R) 1960 Acoustics of Layered Media (Beijing: Science Press) pp230-236 (in Chinese) [布列霍夫斯基 著 (杨训仁 译) 1960 分层介质中的波 (北京:科学出版社) 第 230-236 页]

    [11]

    Zampolli M, Tesei A, Jensen F B, Malm N, Blottman III J B 2007 J. Acoust. Soc. Am. 122 1472

  • [1]

    Tang W L, Fan J 1999 Acta Acustca 24 174 (in Chinese) [汤渭霖, 范军 1999 声学学报 24 174]

    [2]

    Zhuo L K, Fan J, Tang W L 2007 Acta Acustca 32 411 (in Chinese) [卓琳凯, 范军, 汤渭霖 2007 声学学报 32 411]

    [3]

    Pan A, Fan J, Wang B, Chen Z G, Zheng G Y 2014 Acta Phys. Sin. 63 214301 (in Chinese) [潘安, 范军, 王斌, 陈志刚, 郑国垠 2014 63 214301]

    [4]

    Zampolli M, Jensen F B, Tesei A 2009 J. Acoust. Soc. Am 125 89

    [5]

    Zampolli M, Tesei A, Canepa G, Godin O A 2008 J. Acoust. Soc. Am 123 4051

    [6]

    Dcultot D, Litard R, Maze G 2010 J. Acoust. Soc. Am 127 1328

    [7]

    Xia Z, Li X K 2015 Acta Phys. Sin. 64 94302 (in Chinese) [夏峙, 李秀坤 2015 64 94302]

    [8]

    Maze G 1991 J. Acoust. Soc. Am. 89 2559

    [9]

    Lu D 2014 M. S. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [卢笛 2014 硕士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [10]

    Brekhovskikh L M (translated by Yang X R) 1960 Acoustics of Layered Media (Beijing: Science Press) pp230-236 (in Chinese) [布列霍夫斯基 著 (杨训仁 译) 1960 分层介质中的波 (北京:科学出版社) 第 230-236 页]

    [11]

    Zampolli M, Tesei A, Jensen F B, Malm N, Blottman III J B 2007 J. Acoust. Soc. Am. 122 1472

  • [1] 汪磊, 黄益旺, 郭霖, 任超. 浅海粗糙海底声散射建模及声场特性.  , 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [2] 王晓伟, 郭建友. 复动量格林函数方法对n-α散射研究.  , 2019, 68(9): 092101. doi: 10.7498/aps.68.20182197
    [3] 杨阳, 李秀坤. 水下目标声散射信号的时频域盲抽取.  , 2016, 65(16): 164301. doi: 10.7498/aps.65.164301
    [4] 张培珍, 李秀坤, 范军, 王斌. 局部固体填充的水中复杂目标声散射计算与实验.  , 2016, 65(18): 184301. doi: 10.7498/aps.65.184301
    [5] 李秀坤, 孟祥夏, 夏峙. 水下目标几何声散射回波在分数阶傅里叶变换域中的特性.  , 2015, 64(6): 064302. doi: 10.7498/aps.64.064302
    [6] 夏峙, 李秀坤. 水下目标弹性声散射信号分离.  , 2015, 64(9): 094302. doi: 10.7498/aps.64.094302
    [7] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析.  , 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [8] 朱艳菊, 江月松, 张崇辉, 辛灿伟. 应用改进的物理光学法和图形计算电磁学近似算法快速计算导体目标电磁散射特性.  , 2014, 63(16): 164202. doi: 10.7498/aps.63.164202
    [9] 王仲根, 孙玉发, 王国华. 应用改进的特征基函数法和自适应交叉近似算法快速分析导体目标电磁散射特性.  , 2013, 62(20): 204102. doi: 10.7498/aps.62.204102
    [10] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性.  , 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [11] 王晓冰, 梁子长, 吴振森. 水面目标复合电磁散射的并行迭代快速计算.  , 2012, 61(12): 124104. doi: 10.7498/aps.61.124104
    [12] 叶红霞, 金亚秋. 跨界面目标电磁散射Sommerfeld积分的双重广义函数束拟合离散复镜像方法.  , 2009, 58(7): 4579-4589. doi: 10.7498/aps.58.4579
    [13] 代少玉, 吴振森, 徐仰彬. 用基于Daubechies尺度函数的时域多分辨分析计算电磁散射.  , 2007, 56(2): 786-790. doi: 10.7498/aps.56.786
    [14] 郭汝海, 时红艳, 孙秀冬. 用格林函数法计算量子点中的应变分布.  , 2004, 53(10): 3487-3492. doi: 10.7498/aps.53.3487
    [15] 刘春香, 程传福, 任晓荣, 刘 曼, 滕树云, 徐至展. 随机表面散射光场的格林函数法与基尔霍夫近似的比较.  , 2004, 53(2): 427-435. doi: 10.7498/aps.53.427
    [16] 章立源. 标量相对论近似下格林函数能带计算法.  , 1981, 30(8): 1122-1126. doi: 10.7498/aps.30.1122
    [17] 钱祖文. 关于声散射声.  , 1976, 25(6): 472-480. doi: 10.7498/aps.25.472
    [18] 吴式枢. 高阶无规位相近似法与格林函数方法.  , 1966, 22(3): 377-380. doi: 10.7498/aps.22.377
    [19] 胡宁. 利用色散关系计算单个粒子的格林函数.  , 1962, 18(10): 509-513. doi: 10.7498/aps.18.509
    [20] 林为干. 格林函数在计算部分电容中的应用.  , 1959, 15(1): 13-24. doi: 10.7498/aps.15.13
计量
  • 文章访问数:  7860
  • PDF下载量:  285
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-18
  • 修回日期:  2015-12-02
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map