-
Generation and application of the vortex beams are part of the hot topics in the optical field. In connection with the limited detection range of topological charge, we introduce a novel monocyclic multistage intensity distribution, which is generated by the coaxial superposition of two vortex beams with different topological charge numbers which have the same radius of ring in the focal plane of fraunhofer diffraction. This novel intensity distribution which is achieved by computer generated hologram is a new application of sidelobe-modulated optical vortices. The detection range of topological charge is expanded to 128 by two detection constants consisting of segments and radius in the monocyclic multistage intensity distribution method. We study the generation and distribution characteristics of monocyclic multistage intensity distribution in the focal plane of fraunhofer diffraction theoretically and experimentally to generate the qualified monocyclic multistage intensity distribution using a spatial light modulator. Excellent agreement between theoretical and experimental results is observed. The study indicates that two orbital angular momenta of vortex beams can be accurately determined by the segments and radius determined in the monocyclic multistage intensity distribution method. The method is immune to harassments from alignment and phase matching between the beams and optical elements, and has a large detection range, which is enlarged one order of magnitude compared with the previous way of detecting topological charges with sidelobe-modulated optical vortices. Our method provides a more large detection range of topological charge, which enables the vortex beams as the information carriers to carry more data in communication. Therefore, this method possesses research potential and applicability in future free-space optical communication.
-
Keywords:
- optical vortices /
- orbital angular momentum /
- computer generated hologram /
- optical communication technology
[1] Curtis J E, Grier D G 2003 Phys. Rev. Lett. 90 133901
[2] Swartlander G A 2001 Opt. Lett. 26 497
[3] Gan X T, Zhang P, Liu S, Xiao F J, Zhao J L 2008 Chin. Phys. Lett. 25 3280
[4] Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 61 174201]
[5] Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 61 064210]
[6] Gecevičius M, Drevinskas R, Beresna M, Kazansky P 2014 Appl. Phys. Lett. 104 231110
[7] Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180
[8] Dholakia K, Čžmr T 2011 Nature Photon. 5 335
[9] Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640
[10] Rodenburg B, Mirhosseini M, Malik M, Rodenburg B, Mirhosseini M, Malik M, Magaa-LoaizaO, Yanakas M, Maher L, Steinhoff N, Tyler G, Boyd R 2014 New J. Phys. 16 033020
[11] Lehmuskero A, Li Y, Johansson P 2014 Opt. Express 22 434
[12] Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501
[13] Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201
[14] Hickmann J M, Fonseca E J S, Soares W C, Chvez-Cerda S 2010 Phys. Rev. Lett. 105 053904
[15] Ghai D P, Senthilkumaran P, Sirohi R S 2009 Opt. Lasers Eng. 47 123
[16] Sztul H I, Alfano R R 2006 Opt. Lett. 31 999
[17] Zhou H, Yan S, Dong J, Zhang X 2014 Opt. Lett. 39 3173
[18] Guzzinati G, Clark L, Bch A, Verbeeck J 2014 Phys. Rev. A 89 025803
[19] Saitoh K, Hasegawa Y, Hirakawa K, Tanaka N, Uchida M 2013 Phys. Rev. Lett. 111 074801
[20] Xin J T, Gao C Q, Li C, Wang Z 2012 Acta Phys. Sin. 61 174202 (in Chinese) [辛景寿, 高春清, 李辰, 王铮 2012 61 174202]
[21] Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J 2010 Phys. Rev. Lett. 105 153601
[22] Lavery M P J, Berkhout G C G, Courtial J, Padgett M J 2011 J. Opt. 13 064006
[23] Chen J, Kuang D F, Fang Z L 2009 Chin. Phys. Lett. 26 4210
[24] Chen J, Zhao X, Fang Z L, Zhu S W, Yuan X C 2010 Opt. Lett. 35 1485
-
[1] Curtis J E, Grier D G 2003 Phys. Rev. Lett. 90 133901
[2] Swartlander G A 2001 Opt. Lett. 26 497
[3] Gan X T, Zhang P, Liu S, Xiao F J, Zhao J L 2008 Chin. Phys. Lett. 25 3280
[4] Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 61 174201]
[5] Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 61 064210]
[6] Gecevičius M, Drevinskas R, Beresna M, Kazansky P 2014 Appl. Phys. Lett. 104 231110
[7] Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180
[8] Dholakia K, Čžmr T 2011 Nature Photon. 5 335
[9] Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640
[10] Rodenburg B, Mirhosseini M, Malik M, Rodenburg B, Mirhosseini M, Malik M, Magaa-LoaizaO, Yanakas M, Maher L, Steinhoff N, Tyler G, Boyd R 2014 New J. Phys. 16 033020
[11] Lehmuskero A, Li Y, Johansson P 2014 Opt. Express 22 434
[12] Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501
[13] Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201
[14] Hickmann J M, Fonseca E J S, Soares W C, Chvez-Cerda S 2010 Phys. Rev. Lett. 105 053904
[15] Ghai D P, Senthilkumaran P, Sirohi R S 2009 Opt. Lasers Eng. 47 123
[16] Sztul H I, Alfano R R 2006 Opt. Lett. 31 999
[17] Zhou H, Yan S, Dong J, Zhang X 2014 Opt. Lett. 39 3173
[18] Guzzinati G, Clark L, Bch A, Verbeeck J 2014 Phys. Rev. A 89 025803
[19] Saitoh K, Hasegawa Y, Hirakawa K, Tanaka N, Uchida M 2013 Phys. Rev. Lett. 111 074801
[20] Xin J T, Gao C Q, Li C, Wang Z 2012 Acta Phys. Sin. 61 174202 (in Chinese) [辛景寿, 高春清, 李辰, 王铮 2012 61 174202]
[21] Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J 2010 Phys. Rev. Lett. 105 153601
[22] Lavery M P J, Berkhout G C G, Courtial J, Padgett M J 2011 J. Opt. 13 064006
[23] Chen J, Kuang D F, Fang Z L 2009 Chin. Phys. Lett. 26 4210
[24] Chen J, Zhao X, Fang Z L, Zhu S W, Yuan X C 2010 Opt. Lett. 35 1485
计量
- 文章访问数: 7102
- PDF下载量: 229
- 被引次数: 0