搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于放射性气体源体积的虚拟源刻度技术

田自宁 陈伟 韩斌 田言杰 刘文彪 冯天成 欧阳晓平

引用本文:
Citation:

基于放射性气体源体积的虚拟源刻度技术

田自宁, 陈伟, 韩斌, 田言杰, 刘文彪, 冯天成, 欧阳晓平

Study on the virtual source calibration technology based on the volume of radioactive gas source

Tian Zi-Ning, Chen Wei, Han Bin, Tian Yan-Jie, Liu Wen-Biao, Feng Tian-Cheng, Ouyang Xiao-Ping
PDF
导出引用
  • 大气中放射性气体氙同位素的活度浓度值是判断核裂变反应的关键数据, 长期以来其准确测量一直是个难题. 针对该问题, 本文提出和定义了虚拟点源的概念, 并使用LabSOCS软件模拟了不同尺寸气体体源和不同高度点源的探测效率, 根据计算的数据建立了气体源体积和虚拟点源位置的函数关系. 理论上证实了气体源体积和虚拟点位置有良好的线性关系, 在理论上为解决虚拟源刻度技术提供了新的途径.
    The calibration methods for the radioactive Kr and Xe gases produce the key data for the judgment of nuclear fission reaction, whose accurate measurement has always been a difficult problem in operation for a long time. In order to obtain the accuracy, it is very important to calibrate the efficiencies of these gas sources, especially for proficiency test exercise of the laboratory, to analyze the CTBT samples of radioactive xenon, which are used to judge the nuclear test of the country and the measurement system. The relative measurement method has not realized in the experimental calibration, and the Monte Carlo method has large uncertainty also. Therefore, a new measurement method and experimental technology is needed. In order to avoid the above shortcomings, we need to develop a source-less efficient calibration method based on the virtual point source (VPS). In the past, it was suggested that for point sources placed on the symmetry axis, a Ge(Li) or an HPGe cylindrical detector can be changed to an virtual point detector (VPD), where all -ray interactions are considered to occur. This is not a real physical model but only a mathematical description. Aiming at the VPD, we put forward an innovative approach and define the concept of VPS. But, the concept is introduced in a volume source. In this concept, it is assumed that the total photons emission has occurred in a distance within the source described, and it is from the whole source to an imaginary point. If there is really a point located on the symmetry axis of the detector, whose efficiency is similar to that of the whole real volume source, the geometrical considerations used in calibrations of the source will be much simpler. The calibration process of the VPS is: firstly, a standard point source is placed at different position on the symmetry axis to obtain its full-energy peak efficiency. Secondly, the relationship between the height and the efficiency can be established. The position of the VPS can be deduced according to the full-energy peak efficiency of the volume source. Finally, a standard point source, instead of a volume source, is placed at the virtual point position to finish the efficiency calibration work. In this study, the LabSOCS software is used to simulate the detection efficiencies including different volumes of gas source and point source at different points on the symmetry axis. According to the calculated data, a function relationship between the volume of gas source and the virtual point source position is established. It has been proved theoretically that the volume of gas source and the virtual point location have a good linear relationship. This provides a new way in theory to solve the virtual source calibration technology. The VPS efficiency calibration technology is very important in the field of verification of nuclear test-ban, nuclear emergency measurement and environmental radioactivity measurement.
      通信作者: 田自宁, tzn1019@126.com
    • 基金项目: 国家自然科学基金(批准号: 11405134)资助的课题.
      Corresponding author: Tian Zi-Ning, tzn1019@126.com
    • Funds: Project supported by the Natinal Natural Science Foundation of China (Grant No: 11405134).
    [1]

    Xiang Y C, Gong J, Li W, Bian Z S, Hao F H, Wang H X, Wang Q, Xiong Z H 2008 Acta Phys. Sin. 57 784 (in Chinese) [向永春, 龚建, 李伟, 卞直上, 郝樊华, 王红侠, 王茜, 熊宗华 2008 57 784]

    [2]

    Schulze J, Auer M, Werzi R 2000 Appl. Radiat. Isot. 53 23

    [3]

    Zhang W, Mekarski P, Ungar K 2010 Appl. Radiat. Isot. 68 2377

    [4]

    Petit G L, Jutier C, Gross P, Greiner V 2006 Appl. Radiat. Isot. 64 1307

    [5]

    Tian Z N, Ouyang X P, Zeng M, Cheng Z W 2013 Acta Phys. Sin. 62 162902 (in Chinese) [田自宁, 欧阳晓平, 曾鸣, 成智威 2013 62 162902]

    [6]

    Mohammadi M A, Abdi M R, Kamali M, Mostajaboddavati M, Zare M R 2011 Appl. Radiat. Isot. 69 521

    [7]

    Presler O, Peled O, German U, Leichter Y, Alfassi Z B 2002 Nucl. Instr. Meth. Phys. Res. A 484 444

    [8]

    Presler O, German U, Pelled O, Alfassi Z B 2004 Appl. Radiat. Isot. 60 213

    [9]

    Boson J, gren Gran, Johansson L 2008 Nucl. Instr. Meth. Phys. Res. A 587 304

    [10]

    Tian Z N, Ouyang X P, Yin J P, Zhang Y, Yang W J 2013 Atmoic Energy Sci. Technol. 47 1411 (in Chinese) [田自宁, 欧阳晓平, 殷经鹏, 张洋, 杨文静 2013 原子能科学技术 47 1411]

    [11]

    Fontaine J P, Pointurier F, Blanchard X, Taffary T 2004 J. Environ. Radioact. 72 129

    [12]

    Wang L, Jin Y J, Fan R Y, Ouyang X P, L F X, Zhang Z B, Pan H B, Liu L Y, Bu R A 2008 Chin. Phys. B 17 3644

    [13]

    Jia P X, Zhang F, Yan B, Bao S L 2010 Chin. Phys. B 19 087802

    [14]

    Han H T, Wang Q S, Xia L B, Guan X Y, Zhang Z C 2009 Chin. Phys. B 18 4777

    [15]

    Tian Z N, Ouyang X P, Huang X L, Zhou C Y, Zhang Y, Shen M Q, Yang X Y 2011 Nucl. Sci. Tech. 34 832 (in Chinese) [田自宁, 欧阳晓平, 黄雄亮, 周崇阳, 张洋, 申茂泉, 杨晓燕 2011 核技术 34 832]

  • [1]

    Xiang Y C, Gong J, Li W, Bian Z S, Hao F H, Wang H X, Wang Q, Xiong Z H 2008 Acta Phys. Sin. 57 784 (in Chinese) [向永春, 龚建, 李伟, 卞直上, 郝樊华, 王红侠, 王茜, 熊宗华 2008 57 784]

    [2]

    Schulze J, Auer M, Werzi R 2000 Appl. Radiat. Isot. 53 23

    [3]

    Zhang W, Mekarski P, Ungar K 2010 Appl. Radiat. Isot. 68 2377

    [4]

    Petit G L, Jutier C, Gross P, Greiner V 2006 Appl. Radiat. Isot. 64 1307

    [5]

    Tian Z N, Ouyang X P, Zeng M, Cheng Z W 2013 Acta Phys. Sin. 62 162902 (in Chinese) [田自宁, 欧阳晓平, 曾鸣, 成智威 2013 62 162902]

    [6]

    Mohammadi M A, Abdi M R, Kamali M, Mostajaboddavati M, Zare M R 2011 Appl. Radiat. Isot. 69 521

    [7]

    Presler O, Peled O, German U, Leichter Y, Alfassi Z B 2002 Nucl. Instr. Meth. Phys. Res. A 484 444

    [8]

    Presler O, German U, Pelled O, Alfassi Z B 2004 Appl. Radiat. Isot. 60 213

    [9]

    Boson J, gren Gran, Johansson L 2008 Nucl. Instr. Meth. Phys. Res. A 587 304

    [10]

    Tian Z N, Ouyang X P, Yin J P, Zhang Y, Yang W J 2013 Atmoic Energy Sci. Technol. 47 1411 (in Chinese) [田自宁, 欧阳晓平, 殷经鹏, 张洋, 杨文静 2013 原子能科学技术 47 1411]

    [11]

    Fontaine J P, Pointurier F, Blanchard X, Taffary T 2004 J. Environ. Radioact. 72 129

    [12]

    Wang L, Jin Y J, Fan R Y, Ouyang X P, L F X, Zhang Z B, Pan H B, Liu L Y, Bu R A 2008 Chin. Phys. B 17 3644

    [13]

    Jia P X, Zhang F, Yan B, Bao S L 2010 Chin. Phys. B 19 087802

    [14]

    Han H T, Wang Q S, Xia L B, Guan X Y, Zhang Z C 2009 Chin. Phys. B 18 4777

    [15]

    Tian Z N, Ouyang X P, Huang X L, Zhou C Y, Zhang Y, Shen M Q, Yang X Y 2011 Nucl. Sci. Tech. 34 832 (in Chinese) [田自宁, 欧阳晓平, 黄雄亮, 周崇阳, 张洋, 申茂泉, 杨晓燕 2011 核技术 34 832]

  • [1] 杜安天, 刘若涛, 曹春芳, 韩实现, 王海龙, 龚谦. 利用InAs/GaAs数字合金超晶格改进InAs量子点有源区的结构设计.  , 2023, 72(12): 128101. doi: 10.7498/aps.72.20230270
    [2] 尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 牛智川. 量子点单光子源的光纤耦合.  , 2021, 70(8): 087801. doi: 10.7498/aps.70.20201605
    [3] 杨宏恩, 韦联福. 宣布式单光子源宣布效率的宣布测量基相关性.  , 2019, 68(23): 234202. doi: 10.7498/aps.68.20190532
    [4] 田自宁, 欧阳晓平, 陈伟, 王雪梅, 邓宁, 刘文彪, 田言杰. 基于虚拟源原理的源边界参数蒙特卡罗反演技术.  , 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [5] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性.  , 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [6] 李朝辉, 赵建科, 徐亮, 刘峰, 郭毅, 刘锴, 赵青. 点源透过率测试系统精度标定与分析.  , 2016, 65(11): 114206. doi: 10.7498/aps.65.114206
    [7] 黄建微, 王乃彦. 基于蒙特卡罗方法的NaI探测器效率刻度及其测量轫致辐射实验.  , 2014, 63(18): 180702. doi: 10.7498/aps.63.180702
    [8] 田自宁, 欧阳晓平, 曾鸣, 成智威. 积分中值定理在放射性氙样品γ谱效率刻度技术中的应用.  , 2013, 62(16): 162902. doi: 10.7498/aps.62.162902
    [9] 杨超, 刘大刚, 夏蒙重, 王辉辉, 王小敏, 刘腊群, 彭凯. J-PARC多峰离子源体积产生效率三维数值模拟研究.  , 2012, 61(18): 185204. doi: 10.7498/aps.61.185204
    [10] 杨超, 刘大刚, 夏蒙重, 王辉辉, 王小敏, 刘腊群, 彭凯. JAERI 10 A 离子源体积产生效率数值优化.  , 2012, 61(18): 185205. doi: 10.7498/aps.61.185205
    [11] 陈林辉, 饶长辉. 点源信标相关哈特曼-夏克波前传感器光斑偏移测量误差分析.  , 2011, 60(9): 090701. doi: 10.7498/aps.60.090701
    [12] 齐贝贝, 刘迎, 贾光一, 刘小君. 用双点源-P1近似光学模型反演生物组织的光学参量.  , 2011, 60(12): 128701. doi: 10.7498/aps.60.128701
    [13] 戴永丰, 江美福, 杨亦赏, 周杨. 源气体流量比对氟化类金刚石薄膜蛋白吸附能力的影响.  , 2011, 60(11): 118101. doi: 10.7498/aps.60.118101
    [14] 刘志明, 刘文清, 高闽光, 童晶晶, 张天舒, 徐亮, 魏秀丽, 金岭, 王亚萍, 陈军. 基于红外掩日通量法(SOF)污染源排放气体浓度时空分布反演算法研究.  , 2010, 59(8): 5397-5405. doi: 10.7498/aps.59.5397
    [15] 吴重庆, 赵 爽. 电偶极子源定位问题的研究.  , 2007, 56(9): 5180-5184. doi: 10.7498/aps.56.5180
    [16] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响.  , 2006, 55(10): 5311-5317. doi: 10.7498/aps.55.5311
    [17] 冯明明, 秦小林, 周春源, 熊 利, 丁良恩. 偏振光量子随机源.  , 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
    [18] 辛煜, 宁兆元, 程珊华, 陆新华, 江美福, 许圣华, 叶超, 黄松, 杜伟. 源气体对沉积的a-C∶F∶H薄膜结构的影响.  , 2002, 51(8): 1865-1869. doi: 10.7498/aps.51.1865
    [19] 廖静, 梁创, 魏亚军, 吴令安, 潘少华, 姚德成. 基于光量子的真随机源.  , 2001, 50(3): 467-472. doi: 10.7498/aps.50.467
    [20] 曾小东, 梁昌洪, 安毓英. 小尺寸平面源的误差分析.  , 1997, 46(9): 1665-1669. doi: 10.7498/aps.46.1665
计量
  • 文章访问数:  6248
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-27
  • 修回日期:  2015-11-10
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map