-
摩擦电纳米发电机(TENG)是基于摩擦生电和静电感应复合原理将机械能转换为电能的一种新型能源获取方式. 本文采用模板法制备了几种不同参数的聚二甲基硅氧烷(PDMS)微圆柱结构, 并组装成TENG, 实验研究了接触区表面积、外加载荷对TENGs输出性能的影响. 结果表明, 圆形微柱阵列的存在有效提高了TENG的作用面积及电输出性能, 相同载荷下, 电输出随微柱间距离减小而增加, 在间距为15 m、载荷为5 N时, 输出的平均开路电压和短路电流分别为88 V 和15 A, 是同等条件下、微柱间距为50 m电输出的1.5倍以上; 电输出随载荷增加呈准线性增加, ANSYS软件模拟载荷作用下PDMS微圆柱织构的变形行为, 结果表明, 压力作用下, 微圆柱主要发生压缩变形, 基底的变形导致微柱与上电极之间产生侧向摩擦, 从而产生更多电荷, 提升了电输出性能.Contact electrification between insulators, manifesting as static or triboelectricity is a well-known effect. The triboelectric nanogenerator (TENG) which is based on the contact triboelectricification and electrostatic induction provides a promising route for harvesting ambient mechanical energy and converting it into electric energy. The TENG which is due to its unique properties such as simple structures, low cost, high electric density etc., can offset or even replace the traditional power source for small portable electronics, sensors and so on. So far, the influence of factors on the output performance of TENG is still trapped in unsettled questions and under debate. In this paper, we prepare several textured polydimethylsiloxane (PDMS) films with micro rod array by model method and fabricate a TENG with a size of 2222 mm. The electric generation can be achieved with a cycled process of contact and separation between a polymer and metal electrode (PDMS and aluminum respectively in this study). Several influences as the surface structure and external load on the electrical output of the TENG are systematically studied by integrating use of experimenal tests and ANSYS simulation. Results show that the existence of micro rod array on the PDMS films effectively enlarges the contact area and provides more surfaces for charge storage and hence improve the output performance of TENG. When keeping the external load constant, the output increases with decreasing distance between micro rods. When the external load is 5 N and the distance is 15 m, the average output voltage and current as high as 88 V and 15 A can be achieved respectively, which is 1.5 times higher than the output generated when the distance is 50 m. The electrical output increases quasilinearly with the increase of the external load. Simulation results show that the micro rods of PDMS films are mainly compressed by normal load, which results in a bigger diameter of micro rods. The deformations of PDMS substrate leads to the lateral friction between the micro rods and the upper electrode, which produces more charges because of the friction. For 5 N normal load, the deformations of PDMS substrate and micro rods contribute to the sum of displacement vector and the deformations along Z-axis are 32.7 m and 21.3 m respectively, and are 4.96 and 5.04 times higher than the deformation at the load of 1 N. All the results in an enlarging surface area and the larger output correspondingly. Not only does this work present a new type of generator with micro rods on the PDMS surface, which can be an effective method to improve the electrical output of TENG, but also offers a unique point of view for further understanding of the working principle of TENG.
-
Keywords:
- TENG /
- electrification /
- micro rods /
- ANSYS
[1] Dresselhaus M S, Thomas I L 2001 Nature 414 332
[2] Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202
[3] Mao Y C, Zhao P, McConohy G, Yang H, Tong Y X 2014 Adv. Energy Mater. 4 175
[4] Wang Z L, Zhu G, Yang Y, Wang S H, Pan C F 2012 Mater. Today 155 32
[5] Shen D, Park J H, Noh J H, Choe S Y, Kim S H, Kim D J 2009 Sens. Actuators A 154 103
[6] Horn R G, Smith D T 1992 Science 256 362
[7] Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202
[8] Lian Z J 2010 Chin. Phys. B 19 058202
[9] Zhang M Q, Wang Y H, Dong P Y, Zhang J 2012 Acta Phys. Sin. 61 238102 (in Chinese) [张明琪, 王育华, 董鹏玉, 张佳 2012 23 238102]
[10] Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328
[11] Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L 2013 ACS Nano 7 9461
[12] Lin Z H, Cheng G, Lin L, Lee S, Wang Z L 2013 Angew. Chem. Int. Ed 52 1
[13] Zhang H L, Yang Y, Hou T C, Su Y J, Hu C G, Wang Z L 2013 Nano Energy 2 1019
[14] Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166
[15] Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F, Wang Z L 2013 Energy Environ. Sci. 6 3576
[16] Li W, Sun J, Chen M F 2014 Nano Energy 3 95
[17] Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580
[18] Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X J, Wang Z L 2015 Acs Nano 9 8376
[19] Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L 2015 Adv. Energy Mater.1501467
[20] Lee S M, Lee Y, Kim D, Yang Y, Lin L, Lin Z H, Hwang W B, Wang Z L 2013 Nano Energy 2 1113
[21] Zhang X S, Han M D, Wang R X, Zhu F Y, Li Z H, Wang W, Zhang H X 2013 Nano Lett. 13 1168
[22] Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X2013 Nano Energy 4 123
[23] Watson P K, Yu Z Z 1997 J. Electrostat. 40 67
[24] Castle G S P 1997 J. Electrostat. 40 13
[25] Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533
[26] Saurenbach F, Wollmann D, Terris B D, Diaz A F 1992 Langmuir 8 1199
[27] Lee K Y, Chun J S, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W 2014 Adv. Mater. 26 5037
[28] He X M, Guo H Y, Yue X L, Gao J, Xi Y, Hu C Q 2015 Nanoscale 7 1896
[29] Tang W, Meng B, Zhang H X 2013 Nano Energy 2 1164
[30] ZhongJ W, Zhong Q Z, Fan F R, Zhang Y, Wang S H, Hu B, Wang Z L 2013 Nano Energy 2491
[31] Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339
[32] Seghir R, Arscott S 2015 Sensor Actuat. A:-Phys. 230 33
[33] Ltters J C, Olthuis W, Veltink P H, Bergveld P 1997 J. Micromech. Microeng. 7 145
-
[1] Dresselhaus M S, Thomas I L 2001 Nature 414 332
[2] Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202
[3] Mao Y C, Zhao P, McConohy G, Yang H, Tong Y X 2014 Adv. Energy Mater. 4 175
[4] Wang Z L, Zhu G, Yang Y, Wang S H, Pan C F 2012 Mater. Today 155 32
[5] Shen D, Park J H, Noh J H, Choe S Y, Kim S H, Kim D J 2009 Sens. Actuators A 154 103
[6] Horn R G, Smith D T 1992 Science 256 362
[7] Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202
[8] Lian Z J 2010 Chin. Phys. B 19 058202
[9] Zhang M Q, Wang Y H, Dong P Y, Zhang J 2012 Acta Phys. Sin. 61 238102 (in Chinese) [张明琪, 王育华, 董鹏玉, 张佳 2012 23 238102]
[10] Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328
[11] Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L 2013 ACS Nano 7 9461
[12] Lin Z H, Cheng G, Lin L, Lee S, Wang Z L 2013 Angew. Chem. Int. Ed 52 1
[13] Zhang H L, Yang Y, Hou T C, Su Y J, Hu C G, Wang Z L 2013 Nano Energy 2 1019
[14] Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166
[15] Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F, Wang Z L 2013 Energy Environ. Sci. 6 3576
[16] Li W, Sun J, Chen M F 2014 Nano Energy 3 95
[17] Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580
[18] Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X J, Wang Z L 2015 Acs Nano 9 8376
[19] Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L 2015 Adv. Energy Mater.1501467
[20] Lee S M, Lee Y, Kim D, Yang Y, Lin L, Lin Z H, Hwang W B, Wang Z L 2013 Nano Energy 2 1113
[21] Zhang X S, Han M D, Wang R X, Zhu F Y, Li Z H, Wang W, Zhang H X 2013 Nano Lett. 13 1168
[22] Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X2013 Nano Energy 4 123
[23] Watson P K, Yu Z Z 1997 J. Electrostat. 40 67
[24] Castle G S P 1997 J. Electrostat. 40 13
[25] Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533
[26] Saurenbach F, Wollmann D, Terris B D, Diaz A F 1992 Langmuir 8 1199
[27] Lee K Y, Chun J S, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W 2014 Adv. Mater. 26 5037
[28] He X M, Guo H Y, Yue X L, Gao J, Xi Y, Hu C Q 2015 Nanoscale 7 1896
[29] Tang W, Meng B, Zhang H X 2013 Nano Energy 2 1164
[30] ZhongJ W, Zhong Q Z, Fan F R, Zhang Y, Wang S H, Hu B, Wang Z L 2013 Nano Energy 2491
[31] Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339
[32] Seghir R, Arscott S 2015 Sensor Actuat. A:-Phys. 230 33
[33] Ltters J C, Olthuis W, Veltink P H, Bergveld P 1997 J. Micromech. Microeng. 7 145
计量
- 文章访问数: 8760
- PDF下载量: 631
- 被引次数: 0