搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球形Dirac方程的空间格点求解及假态问题

赵斌

引用本文:
Citation:

球形Dirac方程的空间格点求解及假态问题

赵斌

Spherical Dirac equation on the lattice and the problem of the spurious states

Zhao Bin
PDF
导出引用
  • 本文在空间格点上利用虚时间步长方法求解了球形Dirac方程, 着重研究了出现的假态问题. 利用三点数值导数公式离散方程中一阶导数项, 可以证明对于量子数为 和 -的单粒子能级能量是完全相同的, 其中一个为物理解, 另一个为假态. 通过在径向Dirac方程中引入Wilson 项, 可以解决假态问题, 得到全部物理解. 文章以 Woods-Saxon 势为例, 考虑 Wilson 项后, 得到与打靶法一致的结果.
    With the development of radioactive ion beam facilities, the study of exotic nuclei with unusual N/Z ratio has attracted much attention. Compared with the stable nuclei, the exotic nuclei have many novel features, such as the halo phenomenon. In order to describe the halo phenomenon with the diffused density distribution, the correct asymptotic behaviors of wave functions should be treated properly. The relativistic continuum Hartree-Bogoliubov (RCHB) theory which provides a unified and self-consistent description of mean field, pair correlation and continuum has achieved great success in describing the spherical exotic nuclei. In order to study the halo phenomenon in deformed nuclei, it is necessary to extend RCHB theory to the deformed case. However, solving the relativistic Hartree-Bogoliubov equation in space is extremely difficult and time consuming. Imaginary time step method is an efficient method to solve differential equations in coordinate space. It has been used extensively in the nonrelativistic case. For Dirac equation, it is very challenging to use the imaginary time step method due to the Dirac sea. This problem can be solved by the inverse Hamiltonian method. However, the problem of spurious states comes out. In this paper, we solve the radial Dirac equation by the imaginary time step method in coordinate space and study the problem of spurious states. It can be proved that for any potential, when using the three-point differential formula to discretize the first-order derivative operator, the energies of the single-particle states respectively with quantum numbers and - are identical. One of them is a physical state and the other is a spurious state. Although they have the same energies, their wave functions have different behaviors. The wave function of physical state is smooth in space while that of spurious state fluctuates dramatically. Following the method in lattice quantum chromodynamics calculation, the spurious state in radial Dirac equation can be removed by introducing the Wilson term. Taking Woods-Saxon potential for example, the imaginary time step method with the Wilson term is implanted successfully and provides the same results as those from the shooting method, which demonstrates its future application to solving the Dirac equation in coordinate space.
      通信作者: 赵斌, bzhao@buaa.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB834400)、国家自然科学基金 (批准号: 11175002, 11335002, 11375015) 和高等学校博士学科点专项科研基金 (批准号: 20110001110087) 资助的课题.
      Corresponding author: Zhao Bin, bzhao@buaa.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB834400), the National Natural Science Foundation of China (Grants Nos. 11175002, 11335002, 11375015), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110001110087).
    [1]

    Tanihata I 1995 Prog. Part. Nucl. Phys. 35 505

    [2]

    Ozawa A, Kobayashi T, Suzuki T, Yoshida K, Tanihata I 2000 Phys. Rev. Lett. 84 5493

    [3]

    Zilges A, Babilon M, Hartmann T, Savran D, Volz S 2005 Prog. Part. Nucl. Phys. 55 408

    [4]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470

    [5]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963

    [6]

    Meng J, Ring P 1998 Phys. Rev. Lett. 80 460

    [7]

    Meng J, Toki H, Zeng J Y, Zhang S Q, Zhou S G 2002 Phys. Rev. C 65 041302

    [8]

    Meng J, Tanihata I, Yamaji S 1998 Phys. Lett. B 419 1

    [9]

    Meng J, Zhou S G, Tanihata I 2002 Phys. Lett. B 532 209

    [10]

    Meng J, Sugawara-Tanabe K, Yamaji S, Ring P, Arima A 1998 Phys. Rev. C 58 R628

    [11]

    Meng J, Sugawara-Tanabe K, Yamaji S, Arima A 1999 Phys. Rev. C 59 154

    [12]

    Ginocchio J N 1997 Phys. Rev. Lett. 78 436

    [13]

    Ginocchio J N, Leviatan A, Meng J, Zhou S G 1997 Phys. Rev. C 69 034303

    [14]

    Guo J Y 2012 Phys. Rev. C 85 021302

    [15]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501

    [16]

    Liang H Z, Shen S H, Zhao P W, Meng J 2013 Phys. Rev. C 87 014334

    [17]

    Shen S H, Liang H Z, Zhao P W, Zhang S Q, Meng J 2013 Phys. Rev. C 88 024311

    [18]

    Guo J Y, Chen S W, Niu Z M, Li D P, Liu Q 2014 Phys. Rev. Lett. 112 062502

    [19]

    Liang H Z, Meng J, Zhou S G 2015 Phys. Rep. 570 1

    [20]

    Zhang M C 2009 Acta Phys. Sin. 58 61 (in Chinese) [张民仓 2009 58 61]

    [21]

    Lu H F, Meng J 2002 Chin. Phys. Lett. 19 1775

    [22]

    Lu H F, Meng J, Zhang S Q, Zhou S G 2003 Eur. Phys. J. A 17 19

    [23]

    Zhang W, Meng J, Zhang S Q, Geng L S, Toki H 2005 Nucl. Phys. A 753 106

    [24]

    Qu X Y, Chen Y, Zhang S Q, Zhao P W, Shin I J, Lim Y, Kim Y, Meng J 2013 Sci. China. Phys. Mech. 56 2031

    [25]

    Sun B H, Meng J 2008 Chin. Phys. Lett. 25 2429

    [26]

    Li Z, Niu Z M, Sun B H, Wang N, Meng J 2012 Acta Phys. Sin. 61 072601 (in Chinese) [李竹, 牛中明, 孙保华, 王宁, 孟杰2012 61 072601]

    [27]

    Price C E, Walker G E 1987 Phys. Rev. C 36 354

    [28]

    Meng J, Lu H F, Zhang S Q, Zhou S G 2003 Nucl. Phys. A 722 C366

    [29]

    Zhou S G, Meng J, Ring P 2003 Phys. Rev. C 68 034323

    [30]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 3481

    [31]

    Davies K T R, Flocard H, Krieger S, Weiss M S 1980 Nucl. Phys. A 342 111

    [32]

    Bonche P, Flocard H, Heenen P H 2005 Comput. Phys. Commun. 171 49

    [33]

    Zhang Y, Liang H Z, Meng J 2010 Int. J. Mod. Phys. E 19 55

    [34]

    Hagino K, Tanimura Y 2010 Phys. Rev. C 82 057301

    [35]

    Grant I P 1982 Phys. Rev. A 25 1230

    [36]

    Salomonson S, ster P 1989 Phys. Rev. A 40 5548

    [37]

    Tanimura Y, Hagino K, Liang H Z 2015 Prog. Theor. Exp. Phys. 2015 073D01

    [38]

    Zhao S 2007 Comput. Method. Appl. M. 196 5031

    [39]

    Shabaev V M, Tupitsyn I I, Yerokhin V A, Plunien G, Soff G 2004 Phys. Rev. Lett. 93 130405

    [40]

    Pestka G 2003 Phys. Scripta. 68 254

    [41]

    Mller C, Grn N, Scheid W 1998 Phys. Lett. A 242 245

    [42]

    Wilson K G 1977 Proceedings of the First Half of the 1975 International School of Subnuclear Physics Erice, Sicily, July 11-August 1, 1975 p69

    [43]

    Serot B D, Walecka J D 1986 Adv. Nucl. Phys. 16

    [44]

    Reinhard P G 1989 Rep. Prog. Phys. 52 439

    [45]

    Meng J 1998 Nucl. Phys. A 635 3

    [46]

    Abramowitz M, Stegun I A 1964 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications) p914

    [47]

    Koepf W, Ring P 1991 Z. Phys. A: Hadrons Nucl. 339 81

  • [1]

    Tanihata I 1995 Prog. Part. Nucl. Phys. 35 505

    [2]

    Ozawa A, Kobayashi T, Suzuki T, Yoshida K, Tanihata I 2000 Phys. Rev. Lett. 84 5493

    [3]

    Zilges A, Babilon M, Hartmann T, Savran D, Volz S 2005 Prog. Part. Nucl. Phys. 55 408

    [4]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470

    [5]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963

    [6]

    Meng J, Ring P 1998 Phys. Rev. Lett. 80 460

    [7]

    Meng J, Toki H, Zeng J Y, Zhang S Q, Zhou S G 2002 Phys. Rev. C 65 041302

    [8]

    Meng J, Tanihata I, Yamaji S 1998 Phys. Lett. B 419 1

    [9]

    Meng J, Zhou S G, Tanihata I 2002 Phys. Lett. B 532 209

    [10]

    Meng J, Sugawara-Tanabe K, Yamaji S, Ring P, Arima A 1998 Phys. Rev. C 58 R628

    [11]

    Meng J, Sugawara-Tanabe K, Yamaji S, Arima A 1999 Phys. Rev. C 59 154

    [12]

    Ginocchio J N 1997 Phys. Rev. Lett. 78 436

    [13]

    Ginocchio J N, Leviatan A, Meng J, Zhou S G 1997 Phys. Rev. C 69 034303

    [14]

    Guo J Y 2012 Phys. Rev. C 85 021302

    [15]

    Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109 072501

    [16]

    Liang H Z, Shen S H, Zhao P W, Meng J 2013 Phys. Rev. C 87 014334

    [17]

    Shen S H, Liang H Z, Zhao P W, Zhang S Q, Meng J 2013 Phys. Rev. C 88 024311

    [18]

    Guo J Y, Chen S W, Niu Z M, Li D P, Liu Q 2014 Phys. Rev. Lett. 112 062502

    [19]

    Liang H Z, Meng J, Zhou S G 2015 Phys. Rep. 570 1

    [20]

    Zhang M C 2009 Acta Phys. Sin. 58 61 (in Chinese) [张民仓 2009 58 61]

    [21]

    Lu H F, Meng J 2002 Chin. Phys. Lett. 19 1775

    [22]

    Lu H F, Meng J, Zhang S Q, Zhou S G 2003 Eur. Phys. J. A 17 19

    [23]

    Zhang W, Meng J, Zhang S Q, Geng L S, Toki H 2005 Nucl. Phys. A 753 106

    [24]

    Qu X Y, Chen Y, Zhang S Q, Zhao P W, Shin I J, Lim Y, Kim Y, Meng J 2013 Sci. China. Phys. Mech. 56 2031

    [25]

    Sun B H, Meng J 2008 Chin. Phys. Lett. 25 2429

    [26]

    Li Z, Niu Z M, Sun B H, Wang N, Meng J 2012 Acta Phys. Sin. 61 072601 (in Chinese) [李竹, 牛中明, 孙保华, 王宁, 孟杰2012 61 072601]

    [27]

    Price C E, Walker G E 1987 Phys. Rev. C 36 354

    [28]

    Meng J, Lu H F, Zhang S Q, Zhou S G 2003 Nucl. Phys. A 722 C366

    [29]

    Zhou S G, Meng J, Ring P 2003 Phys. Rev. C 68 034323

    [30]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 3481

    [31]

    Davies K T R, Flocard H, Krieger S, Weiss M S 1980 Nucl. Phys. A 342 111

    [32]

    Bonche P, Flocard H, Heenen P H 2005 Comput. Phys. Commun. 171 49

    [33]

    Zhang Y, Liang H Z, Meng J 2010 Int. J. Mod. Phys. E 19 55

    [34]

    Hagino K, Tanimura Y 2010 Phys. Rev. C 82 057301

    [35]

    Grant I P 1982 Phys. Rev. A 25 1230

    [36]

    Salomonson S, ster P 1989 Phys. Rev. A 40 5548

    [37]

    Tanimura Y, Hagino K, Liang H Z 2015 Prog. Theor. Exp. Phys. 2015 073D01

    [38]

    Zhao S 2007 Comput. Method. Appl. M. 196 5031

    [39]

    Shabaev V M, Tupitsyn I I, Yerokhin V A, Plunien G, Soff G 2004 Phys. Rev. Lett. 93 130405

    [40]

    Pestka G 2003 Phys. Scripta. 68 254

    [41]

    Mller C, Grn N, Scheid W 1998 Phys. Lett. A 242 245

    [42]

    Wilson K G 1977 Proceedings of the First Half of the 1975 International School of Subnuclear Physics Erice, Sicily, July 11-August 1, 1975 p69

    [43]

    Serot B D, Walecka J D 1986 Adv. Nucl. Phys. 16

    [44]

    Reinhard P G 1989 Rep. Prog. Phys. 52 439

    [45]

    Meng J 1998 Nucl. Phys. A 635 3

    [46]

    Abramowitz M, Stegun I A 1964 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications) p914

    [47]

    Koepf W, Ring P 1991 Z. Phys. A: Hadrons Nucl. 339 81

  • [1] 赵艳军, 谭宁, 王堉琪, 郑亚锐, 王辉, 刘伍明. 规范势下正方形格点超导量子比特电路中的量子态输运.  , 2023, 72(10): 100304. doi: 10.7498/aps.72.20222349
    [2] 万志龙, 范洪义. 对应负二项式光场的热真空态及其应用.  , 2015, 64(19): 190301. doi: 10.7498/aps.64.190301
    [3] 范洪义, 吴泽. 二项-负二项组合光场态的光子统计性质及其在量子扩散通道中的生成.  , 2015, 64(8): 080303. doi: 10.7498/aps.64.080303
    [4] 宋军, 许业军, 范洪义. 奇偶二项式光场态的小波变换.  , 2011, 60(8): 084208. doi: 10.7498/aps.60.084208
    [5] 王霞, 王自霞, 吕浩, 赵秋玲. 全息干涉光学格点一到三维空间维度的简捷变换.  , 2010, 59(7): 4656-4660. doi: 10.7498/aps.59.4656
    [6] 陈贺胜. 带有2+1味道Wilson费米子的格点量子色动力学在有限温度、有限密度下的相变.  , 2009, 58(10): 6791-6797. doi: 10.7498/aps.58.6791
    [7] 套格图桑, 斯仁道尔吉. 辅助方程构造带强迫项变系数组合KdV方程的精确解.  , 2008, 57(3): 1295-1300. doi: 10.7498/aps.57.1295
    [8] 张民仓, 王振邦. Manning-Rosen标量势与矢量势的Klein-Gordon方程和Dirac方程的束缚态.  , 2006, 55(2): 521-524. doi: 10.7498/aps.55.521
    [9] 张民仓, 王振邦. Makarov势的Dirac方程的束缚态解.  , 2006, 55(12): 6229-6233. doi: 10.7498/aps.55.6229
    [10] 陈 刚. 具有Wood-Saxon势的Dirac方程的束缚态.  , 2004, 53(3): 680-683. doi: 10.7498/aps.53.680
    [11] 陈刚. 具有P?schl-Teller型标量势与矢量势的Klein-Gordon方程和Dirac方程的束缚态.  , 2001, 50(9): 1651-1653. doi: 10.7498/aps.50.1651
    [12] 侯春风, 李 焱, 周忠祥. 具有Morse型标量势与矢量势的Klein-Gordon方程和Dirac方程的束缚态.  , 1999, 48(11): 1999-2003. doi: 10.7498/aps.48.1999
    [13] 王晓光, 于荣金, 李 文. 位移二项式态与位移负二项式态的性质及其与二能级原子的相互作用.  , 1998, 47(11): 1798-1803. doi: 10.7498/aps.47.1798
    [14] 李治宽. 自由电子激光的准Dirac方程.  , 1997, 46(7): 1349-1353. doi: 10.7498/aps.46.1349
    [15] 朱佐农. 含外力项的广义KdV方程的类孤子解.  , 1992, 41(10): 1561-1566. doi: 10.7498/aps.41.1561
    [16] 黄洪斌. 二能级原子体系的二项式态.  , 1991, 40(4): 533-540. doi: 10.7498/aps.40.533
    [17] 胡嗣柱, 苏汝铿. 具有Hulthén的型势的Dirac方程的束缚态.  , 1991, 40(8): 1201-1206. doi: 10.7498/aps.40.1201
    [18] 何翔皓, 冼鼎昌. 格点规范场理论中Wilson圈变量的Schwinger-Dyson方程和普适性问题.  , 1985, 34(7): 882-891. doi: 10.7498/aps.34.882
    [19] 李扬国. 球形核的3-态结构.  , 1965, 21(4): 720-735. doi: 10.7498/aps.21.720
    [20] 张宗烨. 球形核振动中非简谐项的影响.  , 1964, 20(2): 159-163. doi: 10.7498/aps.20.159
计量
  • 文章访问数:  5401
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-15
  • 修回日期:  2015-11-30
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map