搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BEAVRS基准模型热零功率状态的JMCT分析

李刚 邓力 张宝印 李瑞 史敦福 上官丹骅 胡泽华 付元光 马彦

引用本文:
Citation:

BEAVRS基准模型热零功率状态的JMCT分析

李刚, 邓力, 张宝印, 李瑞, 史敦福, 上官丹骅, 胡泽华, 付元光, 马彦

JMCT Monte Carlo analysis of BEAVRS benchmark: hot zero power results

Li Gang, Deng Li, Zhang Bao-Yin, Li Rui, Shi Dun-Fu, Shangguan Dan-Hua, Hu Ze-Hua, Fu Yuan-Guang, Ma Yan
PDF
导出引用
  • 使用JMCT (J Monte Carlo Transport Code)对来自MIT的全堆芯pin-by-pin精细建模的国际基准模型BEAVRS的热零功率(HZP)状态进行了模拟计算, 并与测试数据进行了对比和分析. 比较的物理量包括临界本征值、控制棒价值、反应性温度系数、轴向积分的全堆探测器测量值和不同位置四个组件轴向相对功率密度分布. HZP状态下不同控制棒位置插入和硼浓度的临界本征值计算, JMCT结果与理论值1.000 的误差小于0.2%, 控制棒价值计算结果与测量值符合. JMCT对轴向积分的探测器径向相对功率分布和四个组件的轴向归一化的探测器的计算结果与测量值进行了比较和分析, 计算结果与测量值一致, 同时清晰地展示了模型增加格架后, 轴向功率曲线在相应位置出现下凹的现象. 此外, JMCT给出了轴向积分的组件径向相对功率密度分布和轴向相对功率最大处(Z轴位置)的pin径向相对功率密度分布, 并与国际知名程序MC21结果进行了对比, 两个图像都符合得非常好. 随着计算机与并行计算的高速发展, 蒙特卡罗程序开始从传统的反应堆校验工具向反应堆设计工具转变.
    J Monte Carlo transport code (JMCT), a new three-dimentional (3 D) Monte Carlo transport code, is introduced in this paper. The code is developed on the basis of 3 D geometry infrastructure JCOGIN and composed of multilayer modules. JMCT is capable of simulating the collision of particles with multi-group energy or providing energy data libraries. Two forms of parallelism supported in JMCT are domain decomposition and domain replication. The code has very good expansibility. JMCT Monte Carlo results have been compared with hot zero power (HZP) measurements of BEAVRS benchmark model from the MIT Computational Reactor Physics Group. Included in the comparisons are the eigenvalues, control rod bank worths, isothermal temperature coefficients, axially integrated full core detector measurements, axial detector profiles, etc. The eigenvalues for the HZP condition with different control rods positions and boron concentrations are calculated and the error is less than 0.2% compared with the theoretical error 1.000. The results of JMCT for isothermal temperature coefficients are also listed together with MC21 results and measured data. Each calculation for the eigenvalue is run by 1000 cycles in total, discarding 600 cycles, tracking 4 million neutrons each cycle. It takes 5.3-5.7 hours to run on 200 CPU cores. The JMCT results of axially integrated radial detector relative power distribution (RPD) and axial normalized detector signal are compared with the measured data. Power depressions from grid spacers are clearly seen in the JMCT results and accord with the measured data. The JMCT results of axially integrated assembly RPD power distribution are in good agreement with MC21 results, the maximum difference being 3.173% for 193 assemblies. So is the result of pin power RPD relative power at the axial elevation of peak power; the minimum relative power RPD 0.278 of JMCT is comparable to 0.283 of MC21, and the max relative power RPD 2.422 of JMCT is comparable to 2.452 of MC21. The calculation for RPD is run with 3000 inactive cycles and 5000 active cycles, tracking 4 million particles each cycle. It takes about 4.8 days to run on 200 CPU cores. Shannon entropy is used to demonstrate that the fission source distribution is converged after 3000 inactive cycles. With the development of computers and parallel computing, the Monte Carlo method can be used in reactor design instead of benchmarking other calculated results.
      通信作者: 邓力, deng_li@iapcm.ac.cn
    • 基金项目: 能源局06专项资助(批准号: 2015ZX06002008)、国防科工局核能开发项目(批准号: 科工技[2012]1523)、国家高技术研究发展计划(批准号: 2012AA01A303)和中国工程物理研究院基金(批准号: 2014B0202029) 资助的课题.
      Corresponding author: Deng Li, deng_li@iapcm.ac.cn
    • Funds: Project supported by the Sub-item of Special Projects of the National Energy Bureau, China (Grant No. 2015ZX06002008), the Nuclear Power Development Project of the Science, Technology and Industry for National Defense of China (Grant No. [2012]1523), the National High Technology Research and Development Program of China (Grant No. 2012AA01A303), and the Fund of China Academy of Engineering Physics (Grant No. 2014B0202029).
    [1]

    Forrest B, Brian K, David B 2012 Proceedings of PHYSOR 2012-Advances in ReactorPhysics-Linking Research, Industry, and Education, Knoxville, Tennessee, USA, April 15-20, 2012

    [2]

    Du S H, Zhang S F, Feng T G,Wang Y Z, Xing J R 1989 Computer Simulation of Transport Problems (Changsha: Hunan Science and Technology Press) p304 (in Chinese) [杜书华, 张树发, 冯庭桂, 王元璋, 邢静茹 1989 输运问题的计算机模拟(长沙: 湖南科技出版社) 第304页]

    [3]

    Pei L C, Zhang X Z 1980 Monte Carlo Methods and Application in Particle Transportation (Beijing: Science Press) p1 (in Chinese) [裴鹿成,张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用(北京:科学出版社) 第1页]

    [4]

    Deng L, Li G 2010 Chin. J. Comput. Phys. 27 791 (in Chinese) [邓力, 李刚 2010 计算物理 27 791]

    [5]

    Bill M 2007 M&C+SNA, Monterey California, USA, April 15-19, 2007

    [6]

    Forrest B, William M PHYSOR 2010, Pittsburgh, Pennsylvania, USA, May 9-14 2010

    [7]

    Kord S 2003 M&C+SNA, Gatlinburg, Tennessee, USA, April 6-11, 2003

    [8]

    Kord S, Benoit F, 2013 M&C 2013 Sun Valley, Idaho, USA, May 5-9, 2013 p1809

    [9]

    Daniel K, Thomas S, 2012 Proceedings of PHYSOR 2012 Advances in Reactor Physics-Linking Research, Industry, and Education, Knoxville, Tennessee, USA, April 15-20, 2012

    [10]

    Daniel K, Brian A, 2013 M&C 2013 Sun Valley, Idaho, USA, May 5-9, 2013 p2962

    [11]

    Daniel K, Brian A, Paul R, 2014 PHYSOR 2014, Kyoto, Japan, September 28-October 3, 2014

    [12]

    Li G, Zhang B Y, Deng L, 2013 High Power Laser and Particle Beams 25 158 (in Chinese) [李刚, 张宝印, 邓力 2013 强激光与粒子数 25 158]

    [13]

    Li G, Zhang B Y, Deng L 2013 ANS Transactions 109 1425

    [14]

    Zhang B Y, Li G, Deng L 2013 High Power Laser and Particle Beams 25 173 (in Chinese) [张宝印, 李刚, 邓力 2013 强激光与粒子数 25 173]

    [15]

    Taro U, Forrest B 2005 Nuclear Science and Engineering 149 38

  • [1]

    Forrest B, Brian K, David B 2012 Proceedings of PHYSOR 2012-Advances in ReactorPhysics-Linking Research, Industry, and Education, Knoxville, Tennessee, USA, April 15-20, 2012

    [2]

    Du S H, Zhang S F, Feng T G,Wang Y Z, Xing J R 1989 Computer Simulation of Transport Problems (Changsha: Hunan Science and Technology Press) p304 (in Chinese) [杜书华, 张树发, 冯庭桂, 王元璋, 邢静茹 1989 输运问题的计算机模拟(长沙: 湖南科技出版社) 第304页]

    [3]

    Pei L C, Zhang X Z 1980 Monte Carlo Methods and Application in Particle Transportation (Beijing: Science Press) p1 (in Chinese) [裴鹿成,张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用(北京:科学出版社) 第1页]

    [4]

    Deng L, Li G 2010 Chin. J. Comput. Phys. 27 791 (in Chinese) [邓力, 李刚 2010 计算物理 27 791]

    [5]

    Bill M 2007 M&C+SNA, Monterey California, USA, April 15-19, 2007

    [6]

    Forrest B, William M PHYSOR 2010, Pittsburgh, Pennsylvania, USA, May 9-14 2010

    [7]

    Kord S 2003 M&C+SNA, Gatlinburg, Tennessee, USA, April 6-11, 2003

    [8]

    Kord S, Benoit F, 2013 M&C 2013 Sun Valley, Idaho, USA, May 5-9, 2013 p1809

    [9]

    Daniel K, Thomas S, 2012 Proceedings of PHYSOR 2012 Advances in Reactor Physics-Linking Research, Industry, and Education, Knoxville, Tennessee, USA, April 15-20, 2012

    [10]

    Daniel K, Brian A, 2013 M&C 2013 Sun Valley, Idaho, USA, May 5-9, 2013 p2962

    [11]

    Daniel K, Brian A, Paul R, 2014 PHYSOR 2014, Kyoto, Japan, September 28-October 3, 2014

    [12]

    Li G, Zhang B Y, Deng L, 2013 High Power Laser and Particle Beams 25 158 (in Chinese) [李刚, 张宝印, 邓力 2013 强激光与粒子数 25 158]

    [13]

    Li G, Zhang B Y, Deng L 2013 ANS Transactions 109 1425

    [14]

    Zhang B Y, Li G, Deng L 2013 High Power Laser and Particle Beams 25 173 (in Chinese) [张宝印, 李刚, 邓力 2013 强激光与粒子数 25 173]

    [15]

    Taro U, Forrest B 2005 Nuclear Science and Engineering 149 38

  • [1] 张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟. 体空位缺陷对氧化铝二次电子发射特性的影响分析.  , 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [2] 李源, 石爱红, 陈国玉, 顾秉栋. 基于蒙特卡罗方法的4H-SiC(0001)面聚并台阶形貌演化机理.  , 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [3] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟.  , 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [4] 刘雄国, 邓力, 胡泽华, 李瑞, 付元光, 李刚, 王佳. JMCT程序在线多普勒展宽研究.  , 2016, 65(9): 092501. doi: 10.7498/aps.65.092501
    [5] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子.  , 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [6] 孙贤明, 肖赛, 王海华, 万隆, 申晋. 高斯光束在双层云中传输的蒙特卡罗模拟.  , 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [7] 李树, 蓝可, 赖东显, 刘杰. 球形黑腔辐射输运问题的蒙特卡罗模拟.  , 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [8] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法.  , 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [9] 谢朝, 邹炼, 侯氢, 郑霞. 质子束治疗中非均匀组织的等效水厚度修正研究.  , 2013, 62(6): 068701. doi: 10.7498/aps.62.068701
    [10] 戴春娟, 刘希琴, 刘子利, 刘伯路. 铝基碳化硼材料中子屏蔽性能的蒙特卡罗模拟.  , 2013, 62(15): 152801. doi: 10.7498/aps.62.152801
    [11] 李刚, 邓力, 黄则尧, 李树. 非定常辐射输运问题的蒙特卡罗自适应偏倚抽样.  , 2011, 60(2): 022401. doi: 10.7498/aps.60.022401
    [12] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究.  , 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [13] 鞠志萍, 曹午飞, 刘小伟. 蒙特卡罗模拟单阻止柱双散射体质子束流扩展方法.  , 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [14] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力. 临近空间大气中子环境的仿真研究.  , 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
    [15] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值.  , 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [16] 郑飞腾, 杨中海, 金晓林. 空心阴极类火花放电初始电离过程的PIC/MCC模拟.  , 2008, 57(2): 990-995. doi: 10.7498/aps.57.990
    [17] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究.  , 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [18] 陈法新, 郑 坚, 杨建伦. 中子厚针孔成像数值模拟研究.  , 2006, 55(11): 5947-5952. doi: 10.7498/aps.55.5947
    [19] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论.  , 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [20] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法.  , 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
计量
  • 文章访问数:  7185
  • PDF下载量:  753
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-15
  • 修回日期:  2015-12-14
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map