搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究

许福 李科锋 邓旭辉 张平 龙志林

引用本文:
Citation:

基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究

许福, 李科锋, 邓旭辉, 张平, 龙志林

Research on viscoelastic behavior and rheological constitutive parameters of metallic glasses based on fractional-differential rheological model

Xu Fu, Li Ke-Feng, Deng Xu-Hui, Zhang Ping, Long Zhi-Lin
PDF
导出引用
  • 近年来, 基于非晶合金名义弹性区的流变力学行为探索其结构及形变机理是非晶合金领域研究的热点之一. 本文根据非晶合金结构不均匀性的特征, 提出能够比拟树状分形网络结构的分数阶微分流变模型研究非晶合金的黏弹性行为. 通过室温纳米压痕实验, 对三种不同泊松比和玻璃化转变温度的非晶合金的黏弹性变形行为进行了研究. 实验结果表明: 在表观弹性区, 非晶合金的变形表现出与加载速率相关的线性黏弹性性质. 根据Riemann-Liouville分数阶微积分定义, 分别由分数阶微分及整数阶Kelvin模型对实验结果进行了分析. 分析结果表明, 相对于整数阶流变模型, 分数阶微分流变模型能更精细地表征材料的黏弹性变形特征; 在流变模型参数中, 黏性系数A和分数阶次反映出材料的流变特性和流动趋势, 流变参数与玻璃转变温度、泊松比之间具有较好的相关性, 上述相关性有助于从微观结构角度理解材料塑性与泊松比的关联.
    Metallic glasses offer novel physical, chemical and mechanical properties and have promising potential applications. Recently, exploring the structure and deformation mechanism of metallic glasses according to the rheological mechanical behavior in the nominal elastic region has been the object of intensive research. Physically the mechanical analogues of fractional elements can be represented by self-similarity spring-dashpot fractal networks. In light of the fractal distribution features of the structural heterogeneities, a fractional differential rheological model is introduced to explore the viscoelastic a behavior of metallic glasses in this paper. To investigate the viscoelastic deformation mechanism, carefully designed nanoindentation tests at ambient temperature are proposed in this study. Three kinds of metallic glasses with different Poisson's ratio and glass transition temperature, which have the chemical compositions of Pd40Cu30Ni10P20, Zr48Cu34Pd2Al8Ag8, and (Fe0.432Co0.288B0.192Si0.048Nb0.04) 96Cr4 are selected as the model materials. Experimental and theoretical results clearly indicate that in the nominal elastic region, these metallic glasses exhibit linear viscoelasticity, implying a loading rate-dependent character. Based on the fractional calculus and Riemann-Liouville definition, experimental results are analyzed by the fractional-differential and integer order rheology models respectively. According to the stability of the fitting parameters, here we show that the fractional-differential Kelvin model, which consists of a spring and a fractional dashpot element, can fit the experimental viscoelastic deformation data of the investigated metallic glasses better than that with integer order rheological model. The extracted elastic modulis E1 of the spring in the fractional-differential Kelvin model are comparable to those of samples measured by traditional methods. Such a similarity can be well explained by the mechanical analogue of fractal model proposed for describing the distribution features of the structural heterogeneities in metallic glasses. The rheological parameters obtained here including viscosity index A and fractional order are capable of reflecting the rheological features and the flowing tendency of the above-mentioned metallic glasses. It is found that there exists a clear relationship between the rheological parameters and the reduced glass transition temperature as well as Poisson's ratio, which is helpful for understanding the correlation between plasticity and Poisson's ratio from the micro-structural point of view. The current work provides a rheological model-structure-property relation that may be applicable to a wide range of glassy materials.
      Corresponding author: Xu Fu, xufu@xtu.edu.cn;longzl@xtu.edu.cn ; Long Zhi-Lin, xufu@xtu.edu.cn;longzl@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51471139, 51401176, 21376199) and the Natural Science Foundation of Hunan Province, China (Grant No. 14JJ3078).
    [1]

    Poulsen H F, Wert J A, Neuefeind J, Honkimki V, Daymond M 2004 Nat. Mater. 4 33

    [2]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504

    [3]

    Wagner H, Bedorf D, Kchemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439

    [4]

    Wang J G, Zhao D Q, Pan M X, Shek C H, Wang W H 2009 Appl. Phys. Lett. 94 031904

    [5]

    Hirata A, Guan P F, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M W 2011 Nat. Mater. 10 28

    [6]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260

    [7]

    Huang B, Bai H Y, Wen P, Ding D W, Zhao D Q, Pan M X, Wang W H 2013 J. Appl. Phys. 114 113508

    [8]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502

    [9]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619

    [10]

    Yang Y, Zeng J F, Ye J C, Lu J 2010 Appl. Phys. Lett. 97 261905

    [11]

    Huo L S, Ma J, Ke H B, Bai H Y, Zhao D Q, Wang W H 2012 J. Appl. Phys. 111 113522

    [12]

    Park K W, Lee C M, Wakeda M, Shibutani Y, Falk M L, Lee J C 2008 Acta Mater. 56 5440

    [13]

    Ke H B, Wen P, Peng H L, Wang W H, Greer A L 2011 Scripta Mater. 64 966

    [14]

    Caron A, Kawashima A, Fecht H J, Louzguine-Luzguin D V, Inoue A 2011 Appl. Phys. Lett. 99 171907

    [15]

    Fujita T, Wang Z, Liu Y H, Sheng H, Wang W H, Chen M W 2012 Acta Mater. 60 3741

    [16]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [17]

    Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903

    [18]

    Xue R J, Wang D P, Zhu Z G, Ding D W, Zhang B, Wang W H 2013 J. Appl. Phys. 114 123514

    [19]

    Zhu Z G, Wen P, Wang D P, Xue R J, Zhao D Q, Wang W H 2013 J. Appl. Phys. 114 083512

    [20]

    Ke H B, Liu C T, Yang Y 2014 Sci. China Tech. Sci. 58 47

    [21]

    Huang B, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 153505

    [22]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [23]

    Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201

    [24]

    Liu S T, Wang Z, Peng H L, Yu H B, Wang W H 2012 Scripta Mater. 67 4

    [25]

    Argon A S 1979 Acta Metall. 27 47

    [26]

    Wang W H 2012 Nat. Mater. 11 275

    [27]

    Ma D, Stoica A, Wang X L, Lu Z, Clausen B, Brown D 2012 Phys. Rev. Lett. 108 085501

    [28]

    Zhao L, Ma C L, Fu M W, Zeng X R 2012 Intermetallics 30 65

    [29]

    Wang W H. 2012 Prog. Mater. Sci. 57 487

    [30]

    Liao G K, Long Z L, Xu F, Liu W, Zhang Z Y, Yang M 2015 Acta Phys. Sin. 64 136101 (in Chinese) [廖光开, 龙志林, 许福, 刘为, 张志洋, 杨妙 2015 64 136101]

    [31]

    Wang W H 2011 J. Appl. Phys. 110 053521

    [32]

    Gao M, Liu S T, Wang Z, Wang W H 2012 Mod. Phys. 24 10 (in Chinese) [高萌, 刘诗彤, 王峥, 汪卫华 2012 现代物理知识 24 10]

    [33]

    Schiessel H, Blumen A 1993 J. Phys. A-Math. Gen. 26 5057

    [34]

    Heymans N, Bauwens J C 1994 Rheol. Acta 33 210

    [35]

    Zhu K Q, Hu K X, Yang D 2007 Proceedings of the 5th International Conference on Fluid Mechanics Shanghai, China, August 15-19, 2007 p506

    [36]

    Zhang C Y 2006 Viscoelastic Fracture Mechanics (Beijing: Science Press) p23

    [37]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [38]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [39]

    Peng H L, Li M Z, Sun B A, Wang W H 2012 J. Appl. Phys. 112 023516

    [40]

    Sun B A, Wang W H 2010 Physics 39 628 (in Chinese) [孙保安, 汪卫华 2010 物理 39 628]

    [41]

    Ruan L L, Qu S L, Guo Z Y 2010 Chin. Phys. B 19 034204

    [42]

    Sun B A, Yu H B, Jiao W, Bai H Y, Zhao D Q, Wang W H 2010 Phys. Rev. Lett. 105 035501

    [43]

    Sun B A, Pauly S, Tan J, Stoica M, Wang W H, Khn U, Eckert J 2012 Acta Mater. 60 4160

    [44]

    Jiang M Q, Meng J X, Gao J B, Wang X L, Rouxel T, Keryvin V, Ling Z, Dai L H 2010 Intermetallics 18 2468

    [45]

    Xu F 2012 Ph. D. Dissertation (Xiangtan: Xiangtan University) (in Chinese) [许福 2012 博士学位论文 (湘潭:湘潭大学)]

    [46]

    Long Z L, Shao Y, Xie G Q, Zhang P, Shen B L, Inoue A 2008 J. Alloy. Compd 462 52

    [47]

    Zhang Q S, Zhang W, Inoue A 2007 Mater. Trans. 48 3031

    [48]

    Inoue A, Nishiyama N, Masumoto T 1996 Mater. Trans. JIM 37 181

    [49]

    Radok J R M 1957 Q. Appl. Math. 15 198

    [50]

    Lee E H, Radok J R M 1960 J. Appl. Mech. 27 438

    [51]

    Ting T C T 1966 J. Appl. Mech. 33 845

    [52]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) p62

    [53]

    Zhang W M 2006 Ph. D. Dissertation (Xiangtan: Xiangtan University) (in Chinese) [张为民 2006 博士学位论文 (湘潭:湘潭大学)]

    [54]

    Wang J Q, Wang W H, Yu H B, Bai H Y 2009 Appl. Phys. Lett. 94 121904

    [55]

    Baricco M, Baser TA, Das J, Eckert J 2009 J. Alloy. Compd 483 125

    [56]

    Jiang M Q, Dai L H 2007 Phys. Rev. B 76 054204

    [57]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906

    [58]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [59]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120

    [60]

    Miracle D B 2004 Nat. Mater. 3 697

    [61]

    Zhan X L, Zhang X N, Wang D Y, Lu L 2009 Eng. Mech. 26 187 (in Chinese) [詹小丽, 张肖宁, 王端宜, 卢亮 2009 工程力学 26 187]

    [62]

    Zhou H W, Wang C P, Han B B, Duan Z Q 2011 Int. J. Rock. Mech. Min. 48 116

    [63]

    Zhou H W, Wang C P, Duan Z Q, Zhang M, Liu J F 2012 Sci. Sin-Phys. Mech. Astron. 42 310 (in Chinese) [周宏伟, 王春萍, 段志强, 张淼, 刘建锋 2012 中国科学: 物理学力学天文学 42 310]

    [64]

    Wang D P, Zhao D Q, Ding D W, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 123507

  • [1]

    Poulsen H F, Wert J A, Neuefeind J, Honkimki V, Daymond M 2004 Nat. Mater. 4 33

    [2]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504

    [3]

    Wagner H, Bedorf D, Kchemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439

    [4]

    Wang J G, Zhao D Q, Pan M X, Shek C H, Wang W H 2009 Appl. Phys. Lett. 94 031904

    [5]

    Hirata A, Guan P F, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M W 2011 Nat. Mater. 10 28

    [6]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260

    [7]

    Huang B, Bai H Y, Wen P, Ding D W, Zhao D Q, Pan M X, Wang W H 2013 J. Appl. Phys. 114 113508

    [8]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502

    [9]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619

    [10]

    Yang Y, Zeng J F, Ye J C, Lu J 2010 Appl. Phys. Lett. 97 261905

    [11]

    Huo L S, Ma J, Ke H B, Bai H Y, Zhao D Q, Wang W H 2012 J. Appl. Phys. 111 113522

    [12]

    Park K W, Lee C M, Wakeda M, Shibutani Y, Falk M L, Lee J C 2008 Acta Mater. 56 5440

    [13]

    Ke H B, Wen P, Peng H L, Wang W H, Greer A L 2011 Scripta Mater. 64 966

    [14]

    Caron A, Kawashima A, Fecht H J, Louzguine-Luzguin D V, Inoue A 2011 Appl. Phys. Lett. 99 171907

    [15]

    Fujita T, Wang Z, Liu Y H, Sheng H, Wang W H, Chen M W 2012 Acta Mater. 60 3741

    [16]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [17]

    Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903

    [18]

    Xue R J, Wang D P, Zhu Z G, Ding D W, Zhang B, Wang W H 2013 J. Appl. Phys. 114 123514

    [19]

    Zhu Z G, Wen P, Wang D P, Xue R J, Zhao D Q, Wang W H 2013 J. Appl. Phys. 114 083512

    [20]

    Ke H B, Liu C T, Yang Y 2014 Sci. China Tech. Sci. 58 47

    [21]

    Huang B, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 153505

    [22]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [23]

    Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201

    [24]

    Liu S T, Wang Z, Peng H L, Yu H B, Wang W H 2012 Scripta Mater. 67 4

    [25]

    Argon A S 1979 Acta Metall. 27 47

    [26]

    Wang W H 2012 Nat. Mater. 11 275

    [27]

    Ma D, Stoica A, Wang X L, Lu Z, Clausen B, Brown D 2012 Phys. Rev. Lett. 108 085501

    [28]

    Zhao L, Ma C L, Fu M W, Zeng X R 2012 Intermetallics 30 65

    [29]

    Wang W H. 2012 Prog. Mater. Sci. 57 487

    [30]

    Liao G K, Long Z L, Xu F, Liu W, Zhang Z Y, Yang M 2015 Acta Phys. Sin. 64 136101 (in Chinese) [廖光开, 龙志林, 许福, 刘为, 张志洋, 杨妙 2015 64 136101]

    [31]

    Wang W H 2011 J. Appl. Phys. 110 053521

    [32]

    Gao M, Liu S T, Wang Z, Wang W H 2012 Mod. Phys. 24 10 (in Chinese) [高萌, 刘诗彤, 王峥, 汪卫华 2012 现代物理知识 24 10]

    [33]

    Schiessel H, Blumen A 1993 J. Phys. A-Math. Gen. 26 5057

    [34]

    Heymans N, Bauwens J C 1994 Rheol. Acta 33 210

    [35]

    Zhu K Q, Hu K X, Yang D 2007 Proceedings of the 5th International Conference on Fluid Mechanics Shanghai, China, August 15-19, 2007 p506

    [36]

    Zhang C Y 2006 Viscoelastic Fracture Mechanics (Beijing: Science Press) p23

    [37]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [38]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [39]

    Peng H L, Li M Z, Sun B A, Wang W H 2012 J. Appl. Phys. 112 023516

    [40]

    Sun B A, Wang W H 2010 Physics 39 628 (in Chinese) [孙保安, 汪卫华 2010 物理 39 628]

    [41]

    Ruan L L, Qu S L, Guo Z Y 2010 Chin. Phys. B 19 034204

    [42]

    Sun B A, Yu H B, Jiao W, Bai H Y, Zhao D Q, Wang W H 2010 Phys. Rev. Lett. 105 035501

    [43]

    Sun B A, Pauly S, Tan J, Stoica M, Wang W H, Khn U, Eckert J 2012 Acta Mater. 60 4160

    [44]

    Jiang M Q, Meng J X, Gao J B, Wang X L, Rouxel T, Keryvin V, Ling Z, Dai L H 2010 Intermetallics 18 2468

    [45]

    Xu F 2012 Ph. D. Dissertation (Xiangtan: Xiangtan University) (in Chinese) [许福 2012 博士学位论文 (湘潭:湘潭大学)]

    [46]

    Long Z L, Shao Y, Xie G Q, Zhang P, Shen B L, Inoue A 2008 J. Alloy. Compd 462 52

    [47]

    Zhang Q S, Zhang W, Inoue A 2007 Mater. Trans. 48 3031

    [48]

    Inoue A, Nishiyama N, Masumoto T 1996 Mater. Trans. JIM 37 181

    [49]

    Radok J R M 1957 Q. Appl. Math. 15 198

    [50]

    Lee E H, Radok J R M 1960 J. Appl. Mech. 27 438

    [51]

    Ting T C T 1966 J. Appl. Mech. 33 845

    [52]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) p62

    [53]

    Zhang W M 2006 Ph. D. Dissertation (Xiangtan: Xiangtan University) (in Chinese) [张为民 2006 博士学位论文 (湘潭:湘潭大学)]

    [54]

    Wang J Q, Wang W H, Yu H B, Bai H Y 2009 Appl. Phys. Lett. 94 121904

    [55]

    Baricco M, Baser TA, Das J, Eckert J 2009 J. Alloy. Compd 483 125

    [56]

    Jiang M Q, Dai L H 2007 Phys. Rev. B 76 054204

    [57]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906

    [58]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [59]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120

    [60]

    Miracle D B 2004 Nat. Mater. 3 697

    [61]

    Zhan X L, Zhang X N, Wang D Y, Lu L 2009 Eng. Mech. 26 187 (in Chinese) [詹小丽, 张肖宁, 王端宜, 卢亮 2009 工程力学 26 187]

    [62]

    Zhou H W, Wang C P, Han B B, Duan Z Q 2011 Int. J. Rock. Mech. Min. 48 116

    [63]

    Zhou H W, Wang C P, Duan Z Q, Zhang M, Liu J F 2012 Sci. Sin-Phys. Mech. Astron. 42 310 (in Chinese) [周宏伟, 王春萍, 段志强, 张淼, 刘建锋 2012 中国科学: 物理学力学天文学 42 310]

    [64]

    Wang D P, Zhao D Q, Ding D W, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 123507

  • [1] 张婧祺, 郝奇, 吕国建, 熊必金, 乔吉超. 基于微观结构非均匀性理解非晶态聚苯乙烯的应力松弛行为.  , 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [2] 李佳芮, 乐陶然, 尉昊赟, 李岩. 基于脉冲受激布里渊散射光谱的非接触式黏弹性测量.  , 2024, 73(12): 127801. doi: 10.7498/aps.73.20231974
    [3] 王行政, 杨晨静, 蔡历恒, 陈东. 基于香蕉形液晶分子自组装的纳米螺旋丝有机凝胶及其流变特性.  , 2020, 69(8): 086102. doi: 10.7498/aps.69.20200332
    [4] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间.  , 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [5] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展.  , 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [6] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体.  , 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [7] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状.  , 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [8] 卞西磊, 王刚. 非晶合金的离子辐照效应.  , 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [9] 王峥, 汪卫华. 非晶合金中的流变单元.  , 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [10] 戴卿, 项楠, 程洁, 倪中华. 圆截面直流道中微粒黏弹性聚焦机理研究.  , 2015, 64(15): 154703. doi: 10.7498/aps.64.154703
    [11] 廖光开, 龙志林, 许福, 刘为, 张志洋, 杨妙. 基于分数阶流变模型的铁基块体非晶合金黏弹性行为研究.  , 2015, 64(13): 136101. doi: 10.7498/aps.64.136101
    [12] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟.  , 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [13] 熊毅, 张向军, 张晓昊, 温诗铸. 电场作用下5CB液晶分子的近壁面层黏弹性的QCM研究.  , 2010, 59(11): 7998-8004. doi: 10.7498/aps.59.7998
    [14] 王羽, 欧阳洁, 杨斌鑫. 分数阶Oldroyd-B黏弹性Poiseuille流的Laplace数值反演分析.  , 2010, 59(10): 6757-6763. doi: 10.7498/aps.59.6757
    [15] 张红平, 欧阳洁, 阮春蕾. 纤维悬浮聚合物熔体描述的均一结构多尺度模型.  , 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [16] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化.  , 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [17] 杜启振. 各向异性黏弹性介质伪谱法波场模拟.  , 2004, 53(12): 4428-4434. doi: 10.7498/aps.53.4428
    [18] 杜启振, 杨慧珠. 裂缝性地层黏弹性地震多波波动方程.  , 2004, 53(8): 2801-2806. doi: 10.7498/aps.53.2801
    [19] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟.  , 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
    [20] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究.  , 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
计量
  • 文章访问数:  6720
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-12
  • 修回日期:  2015-10-16
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map