搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

icMRCI+Q理论研究CF+离子12个-S态和23个态的光谱性质

邢伟 刘慧 施德恒 孙金锋 朱遵略

引用本文:
Citation:

icMRCI+Q理论研究CF+离子12个-S态和23个态的光谱性质

邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略

icMRCI+Q study on spectroscopic properties of twelve -S states and twenty-three states of the CF+ cation

Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe
PDF
导出引用
  • 采用考虑Davidson修正的内收缩多参考组态相互作用(icMRCI+Q)方法结合相关一致基组aug-cc-pV5Z和aug-cc-pV6Z计算了CF+离子第一离解极限C+(2Pu)+F(2Pu) 对应的12个-S态(X1+, a3, 13+, 13, 11, 11-, 13-, 21+, 11, 23, 21 和 23+)所产生的23个 态的势能曲线. 计算中考虑了旋轨耦合效应、核价相关和标量相对论修正以及将参考能和相关能分别外推至完全基组极限. 基于得到的势能曲线, 获得了束缚和准束缚的9个-S态和16个 态的光谱常数, 并且X1+, a3势阱一-S态的光谱常数与已有的实验结果非常符合. 此外, 计算了CF自由基X2 态到CF+离子束缚和准束缚的9 个-S态的垂直电离势和绝热电离势, 并且CF+(X1+) CF(X2 )和CF+(a3势阱一) CF(X2 )的垂直电离势和绝热电离势与相应的实验结果也非常符合. 由a3, 11 态和其他激发-S态势能曲线的交叉现象, 借助于计算的旋轨耦合矩阵元, 分析了a3势阱一, 11势阱一 和21+ 态的预解离机理. 计算的23个 态离解极限处的相对能量与实验结果十分吻合. 最后计算了(2) 0+势阱一('=05), (1) 1势阱一('=05) 和(2) 1势阱一('=0) 到X0+ 态跃迁的Franck-Condon因子和辐射寿命.
    The potential energy curves of twenty-three states generated from the twelve -S states (X1+, a3, 13+, 13, 11, 11-, 13-, 21+, 11, 23, 21 and 23+) correlating with the first dissociation channel C+(2Pu)+ F(2Pu) of the CF+ cation are obtained by using the internally contracted multireference configuration interaction approach with the Davidson modification (icMRCI+Q) on the basis of the correlation-consistent aug-cc-pV5Z and aug-cc-pV6Z basis sets for the first time. The spin-orbit coupling, core-valence correlation and relativistic corrections are taken into account, and all the potential energy curves are extrapolated to the complete basis set limit by separately extrapolating the Hartree-Fock and correlation energies scheme. Based on the calculated potential energy curves, the spectroscopic parameters of the bound and quasibound nine -S and sixteen states of the CF+ cation are obtained. And the spectroscopic parameters of X1+and a31st well-S states which are in very good agreement with experimental results are achieved. Furthermore, the vertical and adiabatic ionization potentials of ionization from the X2 state of CF radical to the bound and quasibound nine -S states of the CF+ cation are calculated, and the vertical and adiabatic ionization potentials of the CF+(X1+) CF(X2 ) and CF+(a31st well) CF(X2 ) ionizations are also in good agreement with the corresponding experimental values. Various curve crossings of -S states are revealed, and with the help of our computed spin-orbit coupling matrix elements, the predissociation mechanisms of the a31st well, 111st well and 21+ states are analyzed for the first time. The spin-orbit-induced predissociations for the a31st well, 111st well and 21+-S states could happen, and the predissociations of the a31st well, 111st well and 21 +-S states start around the vibrational levels ' = 15, ' = 1 and ' = 1, respectively. Relative energies of the twenty-three states in the dissociation limits are given, and our calculations match the experimental results very well. Finally, the Franck-Condon factors and radiative lifetimes of transitions from (2) 0+1st well (;'=05), (1) 11st well ('=05) and (2) 11st well ('=0) to X0+ states are predicted for the future laboratory research.
      通信作者: 邢伟, wei19820403@163.com
    • 基金项目: 国家自然科学基金(批准号: 61275132 和11274097)、河南省科技计划(批准号: 142300410201)和河南省高等学校重点科研项目计划(批准号: 14B140024)资助的课题.
      Corresponding author: Xing Wei, wei19820403@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275132 11274097), the Program for Science and Technology of Henan Province, China (Grant No. 142300410201), the Key Program for Scientific Research of the Higher Education Institutions of Henan Province, China (Grant No. 14B140024).
    [1]

    Neufeld D A, Schilke P, Menten K M, Wolfire M G, Black J H, Schuller F, Mller H S P, Thorwirth S, Gsten R, Philipp S 2006 Astron. Astrophys. 454 L37

    [2]

    Guzmn V, Pety J, Gratier P, Goicoechea J R, Gerin M, Roueff E, Teyssier D 2012 Astron. Astrophys. 543 L1

    [3]

    Faber K T, Malloy K J 1992 The Mechanical Propierties of Semiconductors. Semiconductors and Semimetals (Vol. 37) (Boston: Academic Press) pp79-142

    [4]

    Walter T A, Lifshitz C, Chupka W A, Berkowitz J 1969 J. Chem. Phys. 51 3531

    [5]

    Carroll D K, Grennan T P 1970 J. Phys. B: At. Mol. Phys. 3 865

    [6]

    Hildenbrand D L 1975 Chem. Phys. Lett. 32 523

    [7]

    Hepburn J W, Trevor D J, Pollard J E, Shirley D A, Lee Y T 1982 J. Chem. Phys. 76 4287

    [8]

    Dyke J M, Lewis A E, Morris A 1984 J. Chem. Phys. 80 1382

    [9]

    Kawaguchi K, Hirota E 1985 J. Chem. Phys. 83 1437

    [10]

    Gruebele M, Polak M, Saykally R J 1986 Chem. Phys. Lett. 125 165

    [11]

    Reid C J 1996 Chem. Phys. 210 501

    [12]

    Dyke J M, Hooper N, Morris A 2001 J. Electron Spectrosc. Relat. Phenom. 119 49

    [13]

    O'Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666

    [14]

    Hall J A, Richards W G 1972 Mol. Phys. 23 331

    [15]

    White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318

    [16]

    Botschwina P 1986 J. Mol. Spectrosc. 120 23

    [17]

    Peterson K A, Woods R C 1987 J. Chem. Phys. 87 4409

    [18]

    Peterson K A, Woods R C, Rosmus P, Werner H J 1990 J. Chem. Phys. 93 1889

    [19]

    Ricca A 1999 J. Phys. Chem. A 103 1876

    [20]

    Petsalakis I D 1999 J. Chem. Phys. 110 10730

    [21]

    Petsalakis I D, Theodorakopoulos G 2000 Chem. Phys. 254 181

    [22]

    Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17

    [23]

    Inostroza N, Letelier J R, Senent M L, Fuentealba P 2008 Spectrochim. Acta Part A 71 798

    [24]

    Wu Y J, Chen H F, Chou S L, Lin M Y, Cheng B M 2010 Chem. Phys. Lett. 497 12

    [25]

    Sandoval L, Amero J M, Vazquez G J, Palma A 2014 J. Mol. Model. 20 2300

    [26]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [27]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [28]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2015 Acta Phys. Sin. 64 153101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2015 64 153101]

    [29]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [30]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [31]

    Wilson A K, van Mourik T, Dunning T H 1996 J. Mol. Struct. (Theochem) 388 339

    [32]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [33]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [34]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [35]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [36]

    Truhlar D G 1998 Chem. Phys. Lett. 294 45

    [37]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels (University of Waterloo Chemical Physics Research Report CP-663)

    [38]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 24-60

    [39]

    Liu K, Bian W S 2008 J. Comput. Chem. 29 256

  • [1]

    Neufeld D A, Schilke P, Menten K M, Wolfire M G, Black J H, Schuller F, Mller H S P, Thorwirth S, Gsten R, Philipp S 2006 Astron. Astrophys. 454 L37

    [2]

    Guzmn V, Pety J, Gratier P, Goicoechea J R, Gerin M, Roueff E, Teyssier D 2012 Astron. Astrophys. 543 L1

    [3]

    Faber K T, Malloy K J 1992 The Mechanical Propierties of Semiconductors. Semiconductors and Semimetals (Vol. 37) (Boston: Academic Press) pp79-142

    [4]

    Walter T A, Lifshitz C, Chupka W A, Berkowitz J 1969 J. Chem. Phys. 51 3531

    [5]

    Carroll D K, Grennan T P 1970 J. Phys. B: At. Mol. Phys. 3 865

    [6]

    Hildenbrand D L 1975 Chem. Phys. Lett. 32 523

    [7]

    Hepburn J W, Trevor D J, Pollard J E, Shirley D A, Lee Y T 1982 J. Chem. Phys. 76 4287

    [8]

    Dyke J M, Lewis A E, Morris A 1984 J. Chem. Phys. 80 1382

    [9]

    Kawaguchi K, Hirota E 1985 J. Chem. Phys. 83 1437

    [10]

    Gruebele M, Polak M, Saykally R J 1986 Chem. Phys. Lett. 125 165

    [11]

    Reid C J 1996 Chem. Phys. 210 501

    [12]

    Dyke J M, Hooper N, Morris A 2001 J. Electron Spectrosc. Relat. Phenom. 119 49

    [13]

    O'Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666

    [14]

    Hall J A, Richards W G 1972 Mol. Phys. 23 331

    [15]

    White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318

    [16]

    Botschwina P 1986 J. Mol. Spectrosc. 120 23

    [17]

    Peterson K A, Woods R C 1987 J. Chem. Phys. 87 4409

    [18]

    Peterson K A, Woods R C, Rosmus P, Werner H J 1990 J. Chem. Phys. 93 1889

    [19]

    Ricca A 1999 J. Phys. Chem. A 103 1876

    [20]

    Petsalakis I D 1999 J. Chem. Phys. 110 10730

    [21]

    Petsalakis I D, Theodorakopoulos G 2000 Chem. Phys. 254 181

    [22]

    Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17

    [23]

    Inostroza N, Letelier J R, Senent M L, Fuentealba P 2008 Spectrochim. Acta Part A 71 798

    [24]

    Wu Y J, Chen H F, Chou S L, Lin M Y, Cheng B M 2010 Chem. Phys. Lett. 497 12

    [25]

    Sandoval L, Amero J M, Vazquez G J, Palma A 2014 J. Mol. Model. 20 2300

    [26]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [27]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [28]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2015 Acta Phys. Sin. 64 153101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2015 64 153101]

    [29]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [30]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [31]

    Wilson A K, van Mourik T, Dunning T H 1996 J. Mol. Struct. (Theochem) 388 339

    [32]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [33]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [34]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [35]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [36]

    Truhlar D G 1998 Chem. Phys. Lett. 294 45

    [37]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels (University of Waterloo Chemical Physics Research Report CP-663)

    [38]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 24-60

    [39]

    Liu K, Bian W S 2008 J. Comput. Chem. 29 256

  • [1] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究.  , 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究.  , 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [3] 邢伟, 孙金锋, 施德恒, 朱遵略. icMRCI+Q理论研究BF+离子电子态的光谱性质和预解离机理.  , 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [4] 周锐, 李传亮, 和小虎, 邱选兵, 孟慧艳, 李亚超, 赖云忠, 魏计林, 邓伦华. 基于ab initio计算的CF-离子低激发态光谱性质研究.  , 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [5] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数.  , 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [6] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略, 吕淑霞. 一氟化碳电子态的光谱性质和预解离机理的理论研究.  , 2015, 64(15): 153101. doi: 10.7498/aps.64.153101
    [7] 王杰敏, 冯恒强, 孙金锋, 施德恒, 李文涛, 朱遵略. SiN自由基X2+, A2和B2+ 电子态的光谱常数研究.  , 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [8] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数.  , 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [9] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究.  , 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [10] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究.  , 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [11] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究.  , 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [12] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数.  , 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [13] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数.  , 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [14] 施德恒, 刘玉芳, 孙金锋, 张金平, 朱遵略. 基态O和D原子的低能弹性碰撞及OD(X2Π)自由基的准确解析势与分子常数.  , 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [15] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数.  , 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [16] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数.  , 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [17] 马 靖, 丁 蕾, 顾学军, 郑海洋, 方 黎, 张为俊, 黄超群, 卫立夏, 杨 斌, 齐 飞. 四氯乙烯的同步辐射光电离研究.  , 2006, 55(1): 137-141. doi: 10.7498/aps.55.137
    [18] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离.  , 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [19] 毛华平, 杨兰蓉, 王红艳, 朱正和, 唐永建. 钇小团簇的结构和电离势的计算.  , 2005, 54(11): 5126-5129. doi: 10.7498/aps.54.5126
    [20] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱.  , 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
计量
  • 文章访问数:  8235
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-30
  • 修回日期:  2015-10-13
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map