搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纠缠比特在不同噪声环境和信道下演化规律的实验研究

曹连振 刘霞 赵加强 杨阳 李英德 王晓芹 逯怀新

引用本文:
Citation:

纠缠比特在不同噪声环境和信道下演化规律的实验研究

曹连振, 刘霞, 赵加强, 杨阳, 李英德, 王晓芹, 逯怀新

Evolutions of two-qubit entangled system in different noisy environments and channels

Cao Lian-Zhen, Liu Xia, Zhao Jia-Qiang, Yang Yang, Li Ying-De, Wang Xiao-Qin, Lu Huai-Xin
PDF
导出引用
  • 量子信息技术主要基于量子纠缠, 量子纠缠源作为重要的相干叠加态, 其相干性很容易受到环境的影响而变得非常脆弱, 甚至导致量子信息处理的失败. 因此, 全面揭示不同噪声环境和不同噪声信道下量子纠缠源演化规律, 进而探寻抑制退相干的方法就显得至关重要. 本文以量子信息最基本的单元-两比特纠缠对作为研究对象, 实验上利用线性光学系统模拟了比特翻转和相移噪声(集体和非集体), 研究了纠缠源在不同噪声环境及单、双和混合噪声信道下保真度的变化规律. 实验结果表明: 对同一种噪声类型, 当纠缠比特经过双通道噪声环境时, 其纠缠特性破坏得快; 当纠缠比特经过非集体环境时, 其纠缠特性消失得快. 对不同噪声类型比较, 结果表明比特翻转噪声相对于相移噪声更容易破坏纠缠特性. 所得结论对纠缠退相干的理论和实验研究具有重要的借鉴意义, 同时对基于非线性光学系统的量子信息处理技术具有重要的应用价值.
    Quantum information technology is mainly based on quantum entanglement. As an important coherent superposition state, the coherence of quantum entanglement source is easily affected by environment and becomes fragile, which will lead to the failure of the quantum information processing. Thus, it is critical to reveal the evolutions of quantum entanglement source under different noisy environments and different noisy channels. Firstly, we experimentally prepare a high-fidelity two-bit entangled state by several technical methods. The fidelity observed for the state prepared in our experiment is 0.993 and the signal-to-noise ratio can reach up to 299. Then, we simulate the bit-flip noise and phase-shift noise (collective and non-collective) using the all-optical experimental setup. Finally, based on the entanglement qubit state, we experimentally study the evolutions of entanglement characteristic under different noisy environments and the single, double and mixed noisy channels. The experimental results show that for the same type of noise, the entanglement properties disappear fast when entangled qubit passes through dual channel noisy environment. The upper bounds of noise intensity to destroy the entanglement property are 0.25 and 0.26 for the single bit-flip noise and phase-shift noisy channels, respectively. The comparison between the two different kinds of noisy environments shows that the entanglement properties disappear fast when entangled bit passes through non-collective environment. The upper bounds of noise intensity are 0.08 and 0.14 for non-collective bit-flip and phase-shift noise to destroy the entanglement property, while the noise intensities are 0.14 and 0.23 for collective bit-flip and phase-shift noise, respectively. For different kinds of noises, the results show that bit-flip noise is more likely to destroy the entanglement properties than the phase-shift. Our results have great significance for the theoretical and experimental studies of entanglement decoherence and have important application value for quantum information processing technology based on the nonlinear optical system.
      通信作者: 逯怀新, luhuaixin@wfu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11174224, 11404246, 11447225)、山东省自然科学基金(批准号: BS2015DX015)、山东省科技发展计划(批准号: 2011YD01049, 2013YD01016) 和山东省高等学校科技计划(批准号: J13LJ54, J15LJ54)资助的课题.
      Corresponding author: Lu Huai-Xin, luhuaixin@wfu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174224, 11404246, 11447225), the Natural Science Foundation of Shandong Province, China (Grant No. BS2015DX015), the Science and Technology Development Program of Shandong Province, China (Grant Nos. 2011YD01049, 2013YD01016), and the Higher School Science and Technology Program of Shandong Province, China (Grant Nos. J13LJ54, J15LJ54).
    [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777

    [2]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [3]

    Varnava M, Browne D E, Rudolph T 2008 Phys. Rev. Lett. 100 060502

    [4]

    Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210 (in Chinese) [陈理想, 张远颖 2015 64 164210]

    [5]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 64 160306]

    [6]

    Pakhshan E, Pouria P 2014 Quantum Inf. Process. 13 1789

    [7]

    Dr W, Briegel H J 2004 Phys. Rev. Lett. 92 180403

    [8]

    Aolita L, Chaves R, Cavalcanti D, Acn A, Davidovich L 2008 Phys. Rev. Lett. 100 080501

    [9]

    Zhang Y C, Bao W S, Wang X, Fu X Q 2015 Chin. Rhys. B 24 080307

    [10]

    Yang G H, Zhang B B, Li L 2015 Chin. Rhys. B 24 060302

    [11]

    Knoll L, Orlowski A 1995 Phys. Rev. A 51 1622

    [12]

    Vedral V, Plemin M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [13]

    Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392

    [14]

    Zheng S B 2001 Phys. Rev. Lett. 87 230404

    [15]

    Kwiat R G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [16]

    Lo F R, Bellpmo B, Maniscalco S, Compagno G 2013 Int. J. Mod. Phys. B 27 1345053

    [17]

    Xu J S, Li C F, Gong M, Zou X B, Chen L, Chen G, Tang J S, Guo G C 2009 New J. Phys. 11 043010

    [18]

    Almeida M P, deMelo F, Meyll M H, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [19]

    Lu H, Chen L K, Liu C, Xu P, Yao X C, Li L, Liu N L, Zhao B, Chen Y A, Pan J W 2014 Nat. Photon. 8 364

    [20]

    Lu H X, Cao L Z, Zhao J Q, Li Y D, Wang X Q 2014 Sci. Rep. 4 4476

    [21]

    Cao L Z, Zhao J Q, Wang X Q, Lu H X 2013 Sci. China: Phys. Mech. Astron 43 1079 (in Chinese) [曹连振, 赵加强, 王晓芹, 逯怀新 2013 中国科学: 物理学 力学 天文学, 43 1079]

    [22]

    Zhao J Q, Cao L Z, Wang X Q, Lu H X 2012 Phys. Lett. A 376 2377

    [23]

    Zhao J Q, Cao L Z, Lu H X, Wang X Q 2013 Acta Phys. Sin. 62 120301 (in Chinese) [赵加强, 曹连振, 逯怀新, 王晓芹 2013 62 120301]

    [24]

    Lu H X, Zhao J Q, Cao L Z, Wang X Q 2011 Phys. Rev. A 84 44101

    [25]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516

    [26]

    Chiaverini J 2004 Nature 432 602

    [27]

    Prevedel R, Tame M, Stefanov A, Paternostro M, Kim M, Zeilinger A 2007 Phys. Rev. Lett. 99 250503

    [28]

    Reichle R 2006 Nature 443 838

    [29]

    Pramanik T, Majumdar A S 2013 Phys. Lett. A 377 3209

    [30]

    Xiao X, Li Y L 2013 Eur. Phys. J. D 67 204

  • [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777

    [2]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [3]

    Varnava M, Browne D E, Rudolph T 2008 Phys. Rev. Lett. 100 060502

    [4]

    Chen L X, Zhang Y Y 2015 Acta Phys. Sin. 64 164210 (in Chinese) [陈理想, 张远颖 2015 64 164210]

    [5]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 64 160306]

    [6]

    Pakhshan E, Pouria P 2014 Quantum Inf. Process. 13 1789

    [7]

    Dr W, Briegel H J 2004 Phys. Rev. Lett. 92 180403

    [8]

    Aolita L, Chaves R, Cavalcanti D, Acn A, Davidovich L 2008 Phys. Rev. Lett. 100 080501

    [9]

    Zhang Y C, Bao W S, Wang X, Fu X Q 2015 Chin. Rhys. B 24 080307

    [10]

    Yang G H, Zhang B B, Li L 2015 Chin. Rhys. B 24 060302

    [11]

    Knoll L, Orlowski A 1995 Phys. Rev. A 51 1622

    [12]

    Vedral V, Plemin M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [13]

    Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392

    [14]

    Zheng S B 2001 Phys. Rev. Lett. 87 230404

    [15]

    Kwiat R G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498

    [16]

    Lo F R, Bellpmo B, Maniscalco S, Compagno G 2013 Int. J. Mod. Phys. B 27 1345053

    [17]

    Xu J S, Li C F, Gong M, Zou X B, Chen L, Chen G, Tang J S, Guo G C 2009 New J. Phys. 11 043010

    [18]

    Almeida M P, deMelo F, Meyll M H, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579

    [19]

    Lu H, Chen L K, Liu C, Xu P, Yao X C, Li L, Liu N L, Zhao B, Chen Y A, Pan J W 2014 Nat. Photon. 8 364

    [20]

    Lu H X, Cao L Z, Zhao J Q, Li Y D, Wang X Q 2014 Sci. Rep. 4 4476

    [21]

    Cao L Z, Zhao J Q, Wang X Q, Lu H X 2013 Sci. China: Phys. Mech. Astron 43 1079 (in Chinese) [曹连振, 赵加强, 王晓芹, 逯怀新 2013 中国科学: 物理学 力学 天文学, 43 1079]

    [22]

    Zhao J Q, Cao L Z, Wang X Q, Lu H X 2012 Phys. Lett. A 376 2377

    [23]

    Zhao J Q, Cao L Z, Lu H X, Wang X Q 2013 Acta Phys. Sin. 62 120301 (in Chinese) [赵加强, 曹连振, 逯怀新, 王晓芹 2013 62 120301]

    [24]

    Lu H X, Zhao J Q, Cao L Z, Wang X Q 2011 Phys. Rev. A 84 44101

    [25]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516

    [26]

    Chiaverini J 2004 Nature 432 602

    [27]

    Prevedel R, Tame M, Stefanov A, Paternostro M, Kim M, Zeilinger A 2007 Phys. Rev. Lett. 99 250503

    [28]

    Reichle R 2006 Nature 443 838

    [29]

    Pramanik T, Majumdar A S 2013 Phys. Lett. A 377 3209

    [30]

    Xiao X, Li Y L 2013 Eur. Phys. J. D 67 204

  • [1] 黄天龙, 吴永政, 倪明, 汪士, 叶永金. 量子噪声对Shor算法的影响.  , 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] 熊凡, 陈永聪, 敖平. 热噪声环境下偶极场驱动的量子比特动力学.  , 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [3] 周宗权. 量子存储式量子计算机与无噪声光子回波.  , 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [4] 郭春祥, 焦志宏, 周效信, 李鹏程. 激光强度依赖的阈下谐波产生机制.  , 2020, 69(7): 074203. doi: 10.7498/aps.69.20191883
    [5] 李保民, 胡明亮, 范桁. 量子相干.  , 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [6] 韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇. 低噪声超导量子干涉器件磁强计设计与制备.  , 2019, 68(13): 138501. doi: 10.7498/aps.68.20190483
    [7] 汪野, 张静宁, 金奇奂. 相干时间超过10 min的单离子量子比特.  , 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [8] 周洋, 郭健宏. 双量子点结构中Majorana费米子的噪声特性.  , 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [9] 邹琴, 胡小勉, 刘金明. Dzyaloshinskii-Moriya相互作用和内禀消相干对基于两量子比特Heisenberg自旋系统的量子密集编码的影响.  , 2015, 64(8): 080302. doi: 10.7498/aps.64.080302
    [10] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征.  , 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [11] 刘其功, 计新. 相位阻尼通道下初始纠缠对纠缠演化的影响.  , 2012, 61(23): 230303. doi: 10.7498/aps.61.230303
    [12] 郭振, 闫连山, 潘炜, 罗斌, 徐明峰. 量子纠缠消相干对确定型远程制备的影响.  , 2011, 60(6): 060301. doi: 10.7498/aps.60.060301
    [13] 施振刚, 文伟, 谌雄文, 向少华, 宋克慧. 双量子点电荷比特的散粒噪声谱.  , 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [14] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响.  , 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [15] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送.  , 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [16] 李艳玲, 冯 健, 孟祥国, 梁宝龙. 量子比特的普适远程翻转和克隆.  , 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [17] 向少华, 宋克慧. 噪声环境中两粒子纠缠态的纠缠消相干.  , 2006, 55(2): 529-534. doi: 10.7498/aps.55.529
    [18] 张权, 张尔扬, 唐朝京. 基于无消相干子空间的量子避错码设计.  , 2002, 51(8): 1675-1683. doi: 10.7498/aps.51.1675
    [19] 陈小余. 单模费米热噪声信道量子容量的估计.  , 2001, 50(7): 1217-1220. doi: 10.7498/aps.50.1217
    [20] 黎永清, 王育竹. 利用光子相关性降低量子噪声.  , 1989, 38(3): 476-480. doi: 10.7498/aps.38.476
计量
  • 文章访问数:  5530
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-27
  • 修回日期:  2015-11-12
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map