-
提出了一种基于包层模谐振的光纤温度传感器. 它是通过将三包层石英特种光纤(TCQSF)两端分别与普通单模光纤(SMF)电弧熔接构成的SMF-TCQSF-SMF结构. 根据耦合模理论, 首先将TCQSF等效为三个同轴波导, 按各波导模场的分布特点标量计算其传输模式的色散曲线, 并深入研究其耦合长度与传输谱线之间的关系; 其次根据光纤的热光效应及热膨胀效应, 分析计算该传感器的温度灵敏度; 最后选取耦合长度为一个拍长时的传感器进行温度传感实验. 实验结果表明, 在35-95 ℃的温度变化范围内, 其温度灵敏度为73.74 pm/℃, 与理论计算结果一致. 因此, 该传感器具有结构简单、制备容易、灵敏度高、包层模激发可控等优点, 可用于工业生产、生物医学等温度传感领域.A triple-cladding quartz specialty fiber (TCQSF) temperature sensor based on cladding mode resonance is made. The sensor is fabricated by just splicing a short, few-centimeter-long segment of TCQSF between two standard single-mode fibers (SMFs), so the sensor structure is simple. In order to explain its sensing principle in detail, we assume that the TCQSF is equivalent to three coaxial waveguides based on coupling mode theory. Utilizing the scalar method and the relationship between Bessel function and mode field distribution of step-index circular symmetry waveguide, the mode field distribution of these waveguides and their characteristic equation can be easily obtained. Then the dispersion curves of each mode which is transmitted in the three waveguides can be calculated. The intersection between the fundamental core mode LP01(rod) in the rod waveguide and the cladding mode LP01(tube) in the tube waveguide I indicates that the two modes have the same propagation constant, and satisfy the phase-matching condition when the wavelength is 1563.7 nm which is known the resonant wavelength. And only when the sensor length is equal to the beatlength, can the light be coupled completely from the core to the fluorine-doped silica cladding. Thus, the cladding mode resonance phenomenon occurs and a band-stop filter spectrum will be obtained. Then the sensor is applied to the simulation calculation of the temperature sensing characteristics. With increasing temperature, both the refractive index of each layer and the sizes of the axial and radial fibers will change, which will finally lead to a big difference on the dispersion curves of LP01(rod) and LP01(tube). Therefore, the resonant wavelength shift of the sensor can be obtained by just calculating the dispersion curves of these two modes at different temperatures, and the scope of curvature sensitivity is 70.76-97.36 pm/℃. Finally, a straight forward experiment is performed to prove the temperature sensing properties. Experimental results show that the sensor has a sensitivity in temperature of 73.74 pm/℃ at 35 ℃-95 ℃, which is completely consistent with the theoreticaly calculatied results. Thus, the proposed sensor has the advantages of simple structure, easy fabrication, highly sensitivity, controlled cladding mode excitation, and so on. It can be used in industrial production, biomedical and other temperature sensing areas.
-
Keywords:
- cladding mode resonance /
- temperature sensor /
- triple cladding quartz specialty fiber /
- coupling mode theory
[1] Gui X, Hu C C, Xie Y, Li Z Y 2015 Acta Phys. Sin. 64 050704 (in Chinese) [桂鑫, 胡陈晨, 谢莹, 李政颖 2015 64 050704]
[2] Chen Y F, Han Q, Liu T G 2015 Chin. Phys. B 24 014214
[3] Zhang Z F, Zhang Y L 2015 Opt. Laser Technol. 74 16
[4] Mas S, Marti J, Palaci J 2015 Opt. Laser Eng. 74 109
[5] Ohira S I, Miki Yusuke, Matsuzaki T, Nakamura N, Sato Y K, Hirose Y, Toda K 2015 Anal. Chim. Acta 886 188
[6] Qin W, Li S G, Xue J R, Xin X J, Zhang L 2013 Chin. Phys. B 22 074213
[7] Shrestha P, Kim J H, Park Y, Kim C G 2015 Compos. Struct. 125 159
[8] Lu Y F, Shen C Y, Zhong C, Chen D B, Dong X Y, Cai J H 2014 IEEE Photon. Technol. Lett. 26 1124
[9] Luo M M, Liu Y G, Wang Z, Han T T, Wu Z F, Guo J Q, Huang W 2013 Opt. Express 21 30911
[10] Felipe B M, Claudecir R B, Cristiano M B C 2014 Opt. Express 22 30432
[11] Han Y, Xia L, Liu D M 2014 Chin. Phys. B 23 104219
[12] Villatoro J, Minkovich V P, Zubia J 2015 Opt. Lett. 40 3113
[13] Pang F F, Xiang W C, Guo H R, Chen N, Zeng X L, Chen Z Y, Wang T Y 2008 Opt. Express 16 12967
[14] Liu H H, Pang F F, Guo H R, Cao W X, Liu Y Q, Chen N, Chen Z Y, Wang T Y 2010 Opt. Express 18 13072
[15] Fu X H, Xie H Y, Zeng X L, Fu G W, Bi W H 2015 Opt. Express 23 2320
[16] Li L J, Lai Y Z, Cao M Y, Liu C, Yuan X M, Zhang X, Guan J P, Shi J, Li J 2013 Acta Phys. Sin 62 140201 (in Chinese) [李丽君, 来永政, 曹茂永, 刘超, 袁雪梅, 张旭, 管金鹏, 史静, 李晶 2013 62 140201]
[17] Tsao C Y H, Payne D N, Gambling W A 1989 J. Opt. Soc. Am. A 6 555
[18] Xu Z N, Liu Z J 2010 Acta Photon. Sin. 39 1857
[19] Attridge J W, Cozens J R, Leaver K D, Webster N L 1985 J. Lightwave Technol. 3 1084
[20] Fu X H, Xie H Y, Zhu H B, Fu G W, Bi W H 2015 Acta Opt. Sin. 35 0506002 (in Chinese) [付兴虎, 谢海洋, 朱洪彬, 付广伟, 毕卫红 2015 光学学报 35 0506002]
[21] Koike A, Sugimoto N 2006 Proc. SPIE 6616 61160Y
[22] Coviello G, Finazzi V, Villatoro J, Pruneri V 2009 Opt. Express 24 21551
[23] Jin J, Lin S, Song N F 2012 Chin. Phys. B 21 064221
[24] Gong H P, Song H F, Zhang S L, Jin Y X, Dong X Y 2014 IEEE Sens. J. 14 777
[25] Tripathi S M, Kumar A, Varshney R K, Kumar Y B P, Marin E, Meunier J P 2009 J. Lightwave Technol. 27 2348
[26] Liu Y, Wei L 2007 Appl. Optics 46 2516
[27] Fu H W, Yan X, Li H D, Shao M, Zhao N, Liu Q P, Gao H, Jia Z A, Qiao X G 2014 Acta Opt. Sin. 34 1106001 (in Chinese) [傅海威, 闫旭, 李辉栋, 邵敏, 赵娜, 刘钦朋, 高宏, 贾振安, 乔学光 2014 光学学报 34 1106001]
[28] Ma L, Kang Z X, Qi Y H, Jian S S 2015 Optik 126 1044
-
[1] Gui X, Hu C C, Xie Y, Li Z Y 2015 Acta Phys. Sin. 64 050704 (in Chinese) [桂鑫, 胡陈晨, 谢莹, 李政颖 2015 64 050704]
[2] Chen Y F, Han Q, Liu T G 2015 Chin. Phys. B 24 014214
[3] Zhang Z F, Zhang Y L 2015 Opt. Laser Technol. 74 16
[4] Mas S, Marti J, Palaci J 2015 Opt. Laser Eng. 74 109
[5] Ohira S I, Miki Yusuke, Matsuzaki T, Nakamura N, Sato Y K, Hirose Y, Toda K 2015 Anal. Chim. Acta 886 188
[6] Qin W, Li S G, Xue J R, Xin X J, Zhang L 2013 Chin. Phys. B 22 074213
[7] Shrestha P, Kim J H, Park Y, Kim C G 2015 Compos. Struct. 125 159
[8] Lu Y F, Shen C Y, Zhong C, Chen D B, Dong X Y, Cai J H 2014 IEEE Photon. Technol. Lett. 26 1124
[9] Luo M M, Liu Y G, Wang Z, Han T T, Wu Z F, Guo J Q, Huang W 2013 Opt. Express 21 30911
[10] Felipe B M, Claudecir R B, Cristiano M B C 2014 Opt. Express 22 30432
[11] Han Y, Xia L, Liu D M 2014 Chin. Phys. B 23 104219
[12] Villatoro J, Minkovich V P, Zubia J 2015 Opt. Lett. 40 3113
[13] Pang F F, Xiang W C, Guo H R, Chen N, Zeng X L, Chen Z Y, Wang T Y 2008 Opt. Express 16 12967
[14] Liu H H, Pang F F, Guo H R, Cao W X, Liu Y Q, Chen N, Chen Z Y, Wang T Y 2010 Opt. Express 18 13072
[15] Fu X H, Xie H Y, Zeng X L, Fu G W, Bi W H 2015 Opt. Express 23 2320
[16] Li L J, Lai Y Z, Cao M Y, Liu C, Yuan X M, Zhang X, Guan J P, Shi J, Li J 2013 Acta Phys. Sin 62 140201 (in Chinese) [李丽君, 来永政, 曹茂永, 刘超, 袁雪梅, 张旭, 管金鹏, 史静, 李晶 2013 62 140201]
[17] Tsao C Y H, Payne D N, Gambling W A 1989 J. Opt. Soc. Am. A 6 555
[18] Xu Z N, Liu Z J 2010 Acta Photon. Sin. 39 1857
[19] Attridge J W, Cozens J R, Leaver K D, Webster N L 1985 J. Lightwave Technol. 3 1084
[20] Fu X H, Xie H Y, Zhu H B, Fu G W, Bi W H 2015 Acta Opt. Sin. 35 0506002 (in Chinese) [付兴虎, 谢海洋, 朱洪彬, 付广伟, 毕卫红 2015 光学学报 35 0506002]
[21] Koike A, Sugimoto N 2006 Proc. SPIE 6616 61160Y
[22] Coviello G, Finazzi V, Villatoro J, Pruneri V 2009 Opt. Express 24 21551
[23] Jin J, Lin S, Song N F 2012 Chin. Phys. B 21 064221
[24] Gong H P, Song H F, Zhang S L, Jin Y X, Dong X Y 2014 IEEE Sens. J. 14 777
[25] Tripathi S M, Kumar A, Varshney R K, Kumar Y B P, Marin E, Meunier J P 2009 J. Lightwave Technol. 27 2348
[26] Liu Y, Wei L 2007 Appl. Optics 46 2516
[27] Fu H W, Yan X, Li H D, Shao M, Zhao N, Liu Q P, Gao H, Jia Z A, Qiao X G 2014 Acta Opt. Sin. 34 1106001 (in Chinese) [傅海威, 闫旭, 李辉栋, 邵敏, 赵娜, 刘钦朋, 高宏, 贾振安, 乔学光 2014 光学学报 34 1106001]
[28] Ma L, Kang Z X, Qi Y H, Jian S S 2015 Optik 126 1044
计量
- 文章访问数: 6909
- PDF下载量: 378
- 被引次数: 0