搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空中铝单丝电爆炸的实验研究

王坤 史宗谦 石元杰 白骏 李阳 武子骞 邱爱慈 贾申利

引用本文:
Citation:

真空中铝单丝电爆炸的实验研究

王坤, 史宗谦, 石元杰, 白骏, 李阳, 武子骞, 邱爱慈, 贾申利

Experimental investigation on the electrical explosion of single aluminum wire in vacuum

Wang Kun, Shi Zong-Qian, Shi Yuan-Jie, Bai Jun, Li Yang, Wu Zi-Qian, Qiu Ai-Ci, Jia Shen-Li
PDF
导出引用
  • 开展了铝单丝在负极性电流脉冲作用下电爆炸特性的研究. 利用皮秒激光探针, 搭建了阴影、纹影和干涉的光学诊断平台, 得到了不镀膜铝丝典型的能量沉积过程, 在电压崩溃时刻其沉积能量为2.4 eV/atom. 为了增加金属丝内的沉积能量, 开展了相同电参数及金属丝尺寸下的镀膜铝丝电爆炸实验, 其沉积能量可达到5 eV/atom, 实现了在电压崩溃之前铝丝完全气化(完全气化所需能量为4 eV/atom). 阴影图像展示了高密度丝核区域的膨胀过程, 不镀膜铝丝平均膨胀速度为2.2 km/s, 而镀膜铝丝因为沉积能量大, 其膨胀速度约为不镀膜铝丝的2.3倍, 高密度区域膨胀速度为5 km/s. 由于阴影不能反映低密度等离子体的膨胀, 开展了平行双丝实验, 通过测量自发光辐射, 估算了低密度等离子体的膨胀速度. 利用条纹相机拍摄了不镀膜铝丝电爆炸过程中自发光区域的图像. 纹影图像清晰地展示了不镀膜铝丝在电爆炸过程中形成的核冕结构, 而镀膜铝丝电爆炸过程中核冕结构得到了一定程度的抑制. 从干涉图像计算了相移, 在轴对称假设下对相移进行阿贝尔逆变换, 重构了三维的铝原子数密度分布.
    The electrical explosion of single wire occurs in many application fields, such as wire-array Z-pinch, synthesis of the nanopowder, high-intensity magnetic field source, etc. The initial stage of the electrical explosion of single wire has a critical influence on the stagnation and X-ray yield in the wire-array Z-pinch. The impressive result of X-ray yield from wire-array Z-pinch is a major motivation to promote the research in this field. Although numerous studies have been carried out to gain a deep insight into the physics of the electrical explosion of single wire, more experimental investigations are necessary to optimize the energy deposition and expansion rate. It is important to investigate the characteristics of the electrical explosion of single wire under the negative polarity pulsed-current, which is adopted in many Z-pinch facilities. In this paper, the electrical explosion of aluminum wire under negative polarity pulsed-current in vacuum is investigated. In the present experiments, the light emission is measured by the photomultiplier and streak camera. A laser probe EKSPLA-PL2251C (30 ps, 532 nm) is adopted to perform the shadowgraphy, schlieren and interferometry diagnostics. The radial knife-edge schlieren scheme is employed to translate the regions with plasma refractivity and gas-type refractivity. The interferometry is constructed based on Mach-Zehnder interferometer. The shadowgram, schlieren image and interferogram are recorded by Canon cameras. The typical waveforms of the voltage, current and light emission from the electrical explosion of 15 m-diameter, 2 cm-long aluminum wire are derived. The energy deposition at the instant of voltage collapse is about 2.4 eV/atom (vaporization energy is about 4 eV/atom). In order to increase the energy deposited into the wire, the 15 m-diameter, 2 cm-long aluminum wire with 2 m polyimide coating is exploded with the same electrical parameters. The energy deposition in the coated wire is about 5 eV/atom. From the shadowgram of the electrical explosion of uncoated aluminum wire, the expansion velocity of the high-density region can be estimated to be about 2.2 km/s. However, the expansion velocity of the high-density region of the polyimide-coated aluminum wire is about 5 km/s. The schlieren images show that the wire is exploded into a binary structure, i.e., a high-density core surrounded by the low-density corona. It should be noted that the energy deposition in the coated wire is larger than the vaporization energy, indicating that the aluminum wire is totally in gaseous state. Thus, the plasma region in the schlieren image of electrical explosion of coated wire is not distinct. The core-corona structure is depressed by the insulating coatings to a certain extent. The configuration of the parallel wire is adopted to estimate the expansion velocity of the plasma shell. The expansion velocity of the low-density plasma is about 5.8 km/s. Two-dimensional distribution of the phase shift is derived through the interferogram. The central part of the gas-type material with a radius of 0.1 cm exhibits a large positive phase shift, while the peripheral plasma shows a small negative phase shift. The three-dimensional atomic density distribution is reconstructed in the gas-type distribution area in which the contribution of electrons is negligible. In our experiments, the energy deposition of the electrical explosion of uncoated wire ranges from 2 to 4 eV/atom. This may be caused by the initial conditions of the wire surface and the connection between the wire and electrode. Further research should be carried out for a better understanding of this phenomenon.
      通信作者: 史宗谦, zqshi@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51322706, 51237006, 51325705)、教育部新世纪优秀人才支持计划 (批准号: NCET-11-0428)和中央高校基本科研业务费专项资金资助的课题.
      Corresponding author: Shi Zong-Qian, zqshi@mail.xjtu.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 51322706, 51237006, 51325705), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0428), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Xu R K, Li Z H, Yang J L, Xu Z P, Ding N, Guo C, Jiang S L, Ning J M, Xia G X, Li L B, Song F J, Chen J C 2005 Chin. Phys. 14 1613

    [2]

    Bi X S, Zhu L, Yang F L 2012 Acta Phys. Sin. 61 078105 (in Chinese) [毕学松, 朱亮, 杨富龙 2012 61 078105]

    [3]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2013 Chin. Phys. B 22 045206

    [4]

    Clrouin J, Noiret P, Blottiau P, Recoules V, Siberchicot B, Renaudin P, Blancard C, Faussurier G, Holst B, Starrett C E 2012 Phys. Plasmas 19 082702

    [5]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [6]

    Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L, Sanford T W L, Seamen J F, Stygar W A, Struve K W, Breeze S P, McGurn J S, Torres J A, Zagar D M, Gilliland T L, Jobe D O, McKenney J L, Mock R C, Vargas M, Wagoner T, Peterson D L 1998 Phys. Plasmas 5 2105

    [7]

    Beg F N, Lebedev S V, Bland S N, Chittenden J P, Dangor A E, Haines M G 2002 Phys. Plasmas 9 375

    [8]

    Wu J, Li X W, Wang K, Li Z H, Yang Z F, Shi Z Q, Jia S L, Qiu A C 2014 Phys. Plasmas 21 112708

    [9]

    Chittenden J P, Lebedev S V, Ruiz-Camacho J, Beg F N, Bland S N, Jennings C A, Bell A R, Haines M G, Pikuz S A, Shelkovenko T A, Hammer D A 2000 Phys. Rev. E 61 4370

    [10]

    Ding N 2002 China Nuclear Science and Technology Report 00 170 (in Chinese) [丁宁 2002 中国核科技报告 00 170]

    [11]

    Sarkisov G S, Rosenthal S E, Struve K W 2008 Phy. Rev. E 77 056406

    [12]

    Tkachenko S I, Mingaleev A R, Pikuz S A, Romanova V M, Khattatov T M, Shelkovenko T A, Ol'khovskaya O G, Gasilov V A, Kalinin Y G 2012 Plasma Phys. Rep 38 1

    [13]

    Sarkisov G S, Sasorov P V, Struve K W, McDaniel D H 2004 J. Appl. Phys. 96 1674

    [14]

    Zhao J P, Zhang Q G, Yan W Y, Liu X D, Liu L C, Zhou Q, Qiu A C 2013 IEEE Trans. Plasma Sci. 41 2207

    [15]

    Zhao T, Zou X B, Zhang R, Wang X X 2010 Chin. Phys. B 19 075205

    [16]

    Wu J, Li X W, Li Y, Yang Z F, Shi Z Q, Jia S L, Qiu A C 2014 Acta Phys. Sin. 63 125206 (in Chinese) [吴坚, 李兴文, 李阳, 杨泽锋, 史宗谦, 贾申利, 邱爱慈 2014 63 125206]

    [17]

    Sinars D B, Hu M, Chandler K M, Shelkovenko T A, Pikuz S A, Greenly J B, Hammer D A, Kusse B R 2001 Phys. Plasmas 8 216

    [18]

    Sarkisov G S, Struve K W, McDaniel D H 2004 Phys. Plasmas 11 4573

    [19]

    Duselis P U, Vaughan J A, Kusse B R 2004 Phys. Plasmas 11 4025

    [20]

    Sinars D B, Shelkovenko T A, Pikuz S A, Hu M, Romanova V M, Chandler K M, Greenly J B, Hammer D A, Kusse B R 2000 Phys. Plasmas 7 429

    [21]

    Li Y, Sheng L, Wu J, Li X W, Zhao J Z, Zhang M, Yuan Y, Peng B D 2014 Phys. Plasmas 21 102513

    [22]

    Sarkisov G S, Rosenthal S E, Struve K W, McDaniel D H 2005 Phys. Rev. Lett. 94 035004

    [23]

    Beilis I I, Baksht R B, Oreshkin V I, Russkikh A G, Chaikovskii S A, Labetskii A Y, Ratakhin N A, Shishlov A V 2008 Phys. Plasmas 15 013501

    [24]

    Sarkisov G S, Sasorov P V, Struve K W, McDaniel D H, Gribov A N, Oleinik G M 2002 Phy. Rev. E 66 046413

    [25]

    Sarkisov G S, Rosenthal S E, Cochrane K R, Struve K W, Deeney C, McDaniel D H 2005 Phy. Rev. E 71 046404

    [26]

    Shi Z Q, Wang K, Li Y, Shi Y J, Wu J, Jia S L 2014 Phys. Plasmas 21 032702

    [27]

    Oreshkin V I 2009 Tech. Phys. Lett 35 36

    [28]

    Wang K, Shi Z Q, Shi Y J, Bai J, Wu J, Jia S L 2015 Phys. Plasmas 22 062709

    [29]

    Lee Y T, More R M 1984 Phys. Fluids 27 1273

    [30]

    Desjarlais M P 2001 Contrib. Plasma Phys. 41 267

    [31]

    Hu M, Kusse B R 2004 Phys. Plasmas 11 1145

    [32]

    Hipp M, Woisetschlager J, Reiterer P, Neger T 2004 Measurement 36 53

  • [1]

    Xu R K, Li Z H, Yang J L, Xu Z P, Ding N, Guo C, Jiang S L, Ning J M, Xia G X, Li L B, Song F J, Chen J C 2005 Chin. Phys. 14 1613

    [2]

    Bi X S, Zhu L, Yang F L 2012 Acta Phys. Sin. 61 078105 (in Chinese) [毕学松, 朱亮, 杨富龙 2012 61 078105]

    [3]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2013 Chin. Phys. B 22 045206

    [4]

    Clrouin J, Noiret P, Blottiau P, Recoules V, Siberchicot B, Renaudin P, Blancard C, Faussurier G, Holst B, Starrett C E 2012 Phys. Plasmas 19 082702

    [5]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [6]

    Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L, Sanford T W L, Seamen J F, Stygar W A, Struve K W, Breeze S P, McGurn J S, Torres J A, Zagar D M, Gilliland T L, Jobe D O, McKenney J L, Mock R C, Vargas M, Wagoner T, Peterson D L 1998 Phys. Plasmas 5 2105

    [7]

    Beg F N, Lebedev S V, Bland S N, Chittenden J P, Dangor A E, Haines M G 2002 Phys. Plasmas 9 375

    [8]

    Wu J, Li X W, Wang K, Li Z H, Yang Z F, Shi Z Q, Jia S L, Qiu A C 2014 Phys. Plasmas 21 112708

    [9]

    Chittenden J P, Lebedev S V, Ruiz-Camacho J, Beg F N, Bland S N, Jennings C A, Bell A R, Haines M G, Pikuz S A, Shelkovenko T A, Hammer D A 2000 Phys. Rev. E 61 4370

    [10]

    Ding N 2002 China Nuclear Science and Technology Report 00 170 (in Chinese) [丁宁 2002 中国核科技报告 00 170]

    [11]

    Sarkisov G S, Rosenthal S E, Struve K W 2008 Phy. Rev. E 77 056406

    [12]

    Tkachenko S I, Mingaleev A R, Pikuz S A, Romanova V M, Khattatov T M, Shelkovenko T A, Ol'khovskaya O G, Gasilov V A, Kalinin Y G 2012 Plasma Phys. Rep 38 1

    [13]

    Sarkisov G S, Sasorov P V, Struve K W, McDaniel D H 2004 J. Appl. Phys. 96 1674

    [14]

    Zhao J P, Zhang Q G, Yan W Y, Liu X D, Liu L C, Zhou Q, Qiu A C 2013 IEEE Trans. Plasma Sci. 41 2207

    [15]

    Zhao T, Zou X B, Zhang R, Wang X X 2010 Chin. Phys. B 19 075205

    [16]

    Wu J, Li X W, Li Y, Yang Z F, Shi Z Q, Jia S L, Qiu A C 2014 Acta Phys. Sin. 63 125206 (in Chinese) [吴坚, 李兴文, 李阳, 杨泽锋, 史宗谦, 贾申利, 邱爱慈 2014 63 125206]

    [17]

    Sinars D B, Hu M, Chandler K M, Shelkovenko T A, Pikuz S A, Greenly J B, Hammer D A, Kusse B R 2001 Phys. Plasmas 8 216

    [18]

    Sarkisov G S, Struve K W, McDaniel D H 2004 Phys. Plasmas 11 4573

    [19]

    Duselis P U, Vaughan J A, Kusse B R 2004 Phys. Plasmas 11 4025

    [20]

    Sinars D B, Shelkovenko T A, Pikuz S A, Hu M, Romanova V M, Chandler K M, Greenly J B, Hammer D A, Kusse B R 2000 Phys. Plasmas 7 429

    [21]

    Li Y, Sheng L, Wu J, Li X W, Zhao J Z, Zhang M, Yuan Y, Peng B D 2014 Phys. Plasmas 21 102513

    [22]

    Sarkisov G S, Rosenthal S E, Struve K W, McDaniel D H 2005 Phys. Rev. Lett. 94 035004

    [23]

    Beilis I I, Baksht R B, Oreshkin V I, Russkikh A G, Chaikovskii S A, Labetskii A Y, Ratakhin N A, Shishlov A V 2008 Phys. Plasmas 15 013501

    [24]

    Sarkisov G S, Sasorov P V, Struve K W, McDaniel D H, Gribov A N, Oleinik G M 2002 Phy. Rev. E 66 046413

    [25]

    Sarkisov G S, Rosenthal S E, Cochrane K R, Struve K W, Deeney C, McDaniel D H 2005 Phy. Rev. E 71 046404

    [26]

    Shi Z Q, Wang K, Li Y, Shi Y J, Wu J, Jia S L 2014 Phys. Plasmas 21 032702

    [27]

    Oreshkin V I 2009 Tech. Phys. Lett 35 36

    [28]

    Wang K, Shi Z Q, Shi Y J, Bai J, Wu J, Jia S L 2015 Phys. Plasmas 22 062709

    [29]

    Lee Y T, More R M 1984 Phys. Fluids 27 1273

    [30]

    Desjarlais M P 2001 Contrib. Plasma Phys. 41 267

    [31]

    Hu M, Kusse B R 2004 Phys. Plasmas 11 1145

    [32]

    Hipp M, Woisetschlager J, Reiterer P, Neger T 2004 Measurement 36 53

  • [1] 周少彤, 任晓东, 黄显宾, 徐强. 一种用于Z箍缩实验的软X射线成像系统.  , 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [2] 陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟.  , 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [3] 王坤, 史宗谦, 石元杰, 赵志刚, 张董. 真空及空气中金属丝电爆炸特性研究.  , 2017, 66(18): 185203. doi: 10.7498/aps.66.185203
    [4] 蒙世坚, 黄展常, 甯家敏, 胡青元, 叶繁, 秦义, 许泽平, 徐荣昆. Z箍缩动态黑腔冲击波辐射图像诊断.  , 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [5] 盛亮, 彭博栋, 袁媛, 张美, 李奎念, 张信军, 赵晨, 赵吉祯, 李沫, 王培伟, 李阳. 表面绝缘混合平面丝阵Z箍缩激光阴影图像诊断.  , 2014, 63(23): 235205. doi: 10.7498/aps.63.235205
    [6] 但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平. Z箍缩内爆产生的电磁脉冲辐射.  , 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [7] 叶繁, 薛飞彪, 褚衍运, 司粉妮, 胡青元, 宁家敏, 周林, 杨建伦, 徐荣昆, 李正宏, 许泽平. 双层丝阵Z箍缩电流分配实验研究.  , 2013, 62(17): 175203. doi: 10.7498/aps.62.175203
    [8] 高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛. Z箍缩Al等离子体发射谱的非局域平衡模拟.  , 2012, 61(1): 015201. doi: 10.7498/aps.61.015201
    [9] 盛亮, 邱孟通, 黑东炜, 邱爱慈, 丛培天, 王亮平, 魏福利. 丝阵负载Z箍缩内爆动力学研究.  , 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
    [10] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究.  , 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [11] 蒙世坚, 李正宏, 秦义, 叶繁, 徐荣昆. X射线连续谱法诊断铝丝阵Z箍缩等离子体温度.  , 2011, 60(4): 045211. doi: 10.7498/aps.60.045211
    [12] 盛亮, 王亮平, 李阳, 彭博栋, 张美, 吴坚, 王培伟, 魏福利, 袁媛. 平面丝阵负载Z箍缩内爆动力学一维图像诊断.  , 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [13] 王亮平, 韩娟娟, 吴坚, 郭宁, 吴刚, 李岩, 邱爱慈. 基于单丝行为的平面型丝阵Z箍缩模拟.  , 2010, 59(12): 8685-8691. doi: 10.7498/aps.59.8685
    [14] 吴刚, 邱爱慈, 吕敏, 蒯斌, 王亮平, 丛培天, 邱孟通, 雷天时, 孙铁平, 郭宁, 韩娟娟, 张信军, 黄涛, 张国伟, 乔开来. “强光一号”Al丝阵Z箍缩产生K层辐射实验研究.  , 2009, 58(7): 4779-4786. doi: 10.7498/aps.58.4779
    [15] 宁 成, 丁 宁, 杨震华. “强光一号”装置上部分Z箍缩实验结果的物理分析.  , 2007, 56(1): 338-345. doi: 10.7498/aps.56.338
    [16] 宁 成, 丁 宁, 刘 全, 杨震华. 双层钨丝阵的Z箍缩动力学过程研究.  , 2006, 55(7): 3488-3493. doi: 10.7498/aps.55.3488
    [17] 张 扬, 丁 宁. 轴向流对Z箍缩等离子体稳定性的影响.  , 2006, 55(5): 2333-2339. doi: 10.7498/aps.55.2333
    [18] 黄显宾, 杨礼兵, 顾元朝, 邓建军, 周荣国, 邹 杰, 周少彤, 张思群, 陈光华, 畅里华, 李丰平, 欧阳凯, 李 军, 杨 亮, 王 雄, 张朝辉. 氩气Z箍缩内爆动力学过程实验研究.  , 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [19] 宁 成, 李正宏, 华欣生, 徐荣昆, 彭先觉, 许泽平, 杨建伦, 郭 存, 蒋世伦, 丰树平, 杨礼兵, 晏成立, 宋凤军, V. P. Smirnov, Yu. G. Kalinin, A. S. Kingsep, A. S. Chernenko, E. V. Grabovsky. 铝-钨丝混编阵的Z-箍缩实验研究.  , 2004, 53(7): 2244-2249. doi: 10.7498/aps.53.2244
    [20] 李玉同, 张 杰, 陈黎明, 夏江帆, 腾 浩, 魏志义, 江文勉. 对飞秒激光等离子体相互作用中横向箍缩的观察.  , 2000, 49(7): 1400-1403. doi: 10.7498/aps.49.1400
计量
  • 文章访问数:  6655
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-19
  • 修回日期:  2015-09-22
  • 刊出日期:  2016-01-05

/

返回文章
返回
Baidu
map