搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiFe/Pt薄膜中角度相关的逆自旋霍尔效应

韩方彬 张文旭 彭斌 张万里

引用本文:
Citation:

NiFe/Pt薄膜中角度相关的逆自旋霍尔效应

韩方彬, 张文旭, 彭斌, 张万里

Angle dependent inverse spin Hall effect in NiFe/Pt thin film

Han Fang-Bin, Zhang Wen-Xu, Peng Bin, Zhang Wan-Li
PDF
导出引用
  • NiFe/Pt双层薄膜样品在铁磁共振时, NiFe磁矩进动所产生的自旋流注入到Pt层中, 由于逆自旋霍尔效应产生直流电压VISHE, 此电压会叠加到NiFe薄膜由于自旋整流效应而产生的电压VSRE 上, 实验测量所得电压为VISHE和VSRE的叠加. 为了区分这两种不同机理对电压的贡献, 本文采取旋转外加静磁场的方法, 通过分析所测电压随磁场角度的变化从而分离出VISHE 的大小. 研究结果表明, 相比于单层NiFe(20 nm)薄膜样品, NiFe(20 nm)/Pt(10 nm)双层膜样品中由于NiFe自旋注入到Pt 中导致铁磁共振线宽增加. 与逆自旋霍尔效应产生的电压相比, 自旋整流效应的贡献较小, 但不可忽略. 本文工作有助于认清铁磁/非磁性金属材料中的自旋相关效应, 并提供了一种准确的分析逆自旋霍尔效应的方法.
    In NiFe/Pt bilayer, when spin current originating from the magnetization procession of NiFe is inject into the adjacent Pt layer under ferromagnetic resonance (FMR), the direct current (DC) voltage VISHE generated by inverse spin Hall effect (ISHE) will be added to the voltage VSRE generated by spin rectification effect (SRE), therefore the measured voltage in experiment is the sum of VISHE and VSRE. It is crucial to separate these contributions, which has been often overlooked before, in order to make a reasonable comparison of the ISHE among different materials. The voltages having symmetric (Lorentz type) and anti-symmetric (dispersive type) components both vary with the static magnetic field strength. However, they have different static magnetic field angle dependences according to our theoretical analysis. In order to distinguish the contribution of ISHE from that of SRE, in this paper, we employ a method, in which the voltage across the sample is measured when the static magnetic field is applied to different directions, to analyze the voltage by varying magnetic field angle in a range from 0° to 360° in steps of 10°, thereby separating the VISHE. The separation is carried out by fitting the angle dependent symmetric and anti-symmetric curves to different theoretical formulas of ISHE and SRE. The voltages of the two different contributions together with the phase angle of the microwave are obtained. At the same time, the FMR line width and the resonant field can be read out. The results show that the ferromagnetic resonance line width in NiFe(20 nm)/Pt(10 nm) sample is larger than that in NiFe(20 nm) sample due to the injection of spin current from NiFe to Pt in the bi-layer sample. We notice that in the curves of voltage vs. static magnetic field, the Lorentz symmetry components of the voltage from the bi-layer sample weight more than those from the single-layer sample. This is explained as a result of the existence of the ISHE in the bi-layer sample, where the spins are pumped from the magnetic layer to the adjacent nonmagnetic layer. The spin pumping effect does not show up in the single-layer sample. There are a large portion of symmetric components in the double layer sample, which is attributed to the ISHE. Although the voltage caused by the SRE is smaller than that by the ISHE, the SRE voltage cannot be ignored. Our work is crucial to understanding the spin-related effects in ferromagnetic/nonmagnetic metal material and provides an improved analysis method to study the spin pumping and the ISHE.
      通信作者: 张文旭, xwzhang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61471095)资助的课题.
      Corresponding author: Zhang Wen-Xu, xwzhang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471095).
    [1]

    Žutić I, Dery H 2011 Nat. Mater. 10 647

    [2]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E 2011 J. Appl. Phys. 109 103913

    [3]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601

    [4]

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201 (in Chinese) [王日兴,贺鹏斌,肖运昌,李建英 2015 64 137201]

    [5]

    Tserkovnyak Y, Brataas A, Bauer G E W 2002 Phys. Rev. Lett. 88 117601

    [6]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509

    [7]

    Slachter A, Bakker F L, Adam J P, van Wees B J 2010 Nat. Phys. 6 879

    [8]

    Adachi H, Uchida K, Saitoh E, Maekawa S 2013 Rep. Prog. Phys. 76 036501

    [9]

    Wu H, Wan C H, Yuan Z H, Zhang X, Jiang J, Zhang Q T, Wen Z C, Han X F 2015 Phys. Rev. B 92 04404

    [10]

    Ando K, Morikawa M, Trypiniotis T, Fujikawa Y, Barnes C H W, Saitoh E 2010 Appl. Phys. Lett. 96 082502

    [11]

    Wu Y, Zhao Y L, Xiong Q, Xu X G, Sun Y, Zhang S Q, Jiang Y 2014 Chin. Phys. B 23 018503

    [12]

    Gong S J, Duan C G 2015 Acta Phys. Sin. 64 187103 (in Chinese) [龚士静, 段纯刚 2015 64 187103]

    [13]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172

    [14]

    Hahn C, De Loubens G, Viret M, Klein O, Naletov V V, Youssef J B 2013 Phys. Rev. Lett. 111 217204

    [15]

    Jungfleisch M B, Chumak A V, Kehlberger A, Lauer V, Kim D H, Onbasli M C, Ross C A, Kläui M, Hillebrands B 2015 Phys. Rev. B 91 134407

    [16]

    Zhang W, Jungfleisch M B, Jiang W J, Sklenar J, Fradin F Y, Pearson J E, Ketterson J B, Hoffmann A 2015 J. Appl. Phys. 117 172610

    [17]

    Nan T X, Emori S, Boone C T, Wang X J, Oxholm T M, Jones J G, Howe B M, Brown G J, Sun N X 2015 Phys. Rev. B 91 214416

    [18]

    Deorani P, Yang H 2013 Appl. Phys. Lett. 103 232408

    [19]

    Shikoh E, Ando K, Kubo K, Saitoh E, Shinjo T, Shiraishi M 2013 Phys. Rev. Lett. 110 127201

    [20]

    Dushenko S, Koike M, Ando Y, Shinjo T, Myronov M, Shiraishi M 2015 Phys. Rev. Lett. 114 196602

    [21]

    Ando K, Saitoh E 2012 Nat. Commun. 3 629

    [22]

    Ando Y, Ichiba K, Yamada S, Shikoh E, Shinjo T, Hamaya K, Shiraishi M 2013 Phys. Rev. B 88 140406

    [23]

    Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W, Hu A, Yang Y, Tang D M, Zhang B S, Ding H F 2012 Phys. Rev. B 85 214423

    [24]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555

    [25]

    Mukherjee S S, Deorani P, Kwon J H, Yang H 2012 Phys. Rev. B 85 094416

    [26]

    Soh W T, Peng B, Chai G Z, Ong C K 2014 Rev. Sci. Instrum. 85 026109

    [27]

    Soh W T, Peng B, Ong C K 2014 J. Phys. D: Appl. Phys. 47 285001

    [28]

    Gui Y S, Bai L H, Hu C M 2013 Sci. China 56 124

    [29]

    Kittel C 1947 Phys. Rev. 71 270

    [30]

    Chen L, Ikeda S, Matsukura F, Ohno H 2014 Appl. Phys. Express 7 013002

    [31]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E W, Bader S E, Hoffmann A 2010 Phys. Rev. Lett. 104 046601

  • [1]

    Žutić I, Dery H 2011 Nat. Mater. 10 647

    [2]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E 2011 J. Appl. Phys. 109 103913

    [3]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601

    [4]

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201 (in Chinese) [王日兴,贺鹏斌,肖运昌,李建英 2015 64 137201]

    [5]

    Tserkovnyak Y, Brataas A, Bauer G E W 2002 Phys. Rev. Lett. 88 117601

    [6]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509

    [7]

    Slachter A, Bakker F L, Adam J P, van Wees B J 2010 Nat. Phys. 6 879

    [8]

    Adachi H, Uchida K, Saitoh E, Maekawa S 2013 Rep. Prog. Phys. 76 036501

    [9]

    Wu H, Wan C H, Yuan Z H, Zhang X, Jiang J, Zhang Q T, Wen Z C, Han X F 2015 Phys. Rev. B 92 04404

    [10]

    Ando K, Morikawa M, Trypiniotis T, Fujikawa Y, Barnes C H W, Saitoh E 2010 Appl. Phys. Lett. 96 082502

    [11]

    Wu Y, Zhao Y L, Xiong Q, Xu X G, Sun Y, Zhang S Q, Jiang Y 2014 Chin. Phys. B 23 018503

    [12]

    Gong S J, Duan C G 2015 Acta Phys. Sin. 64 187103 (in Chinese) [龚士静, 段纯刚 2015 64 187103]

    [13]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172

    [14]

    Hahn C, De Loubens G, Viret M, Klein O, Naletov V V, Youssef J B 2013 Phys. Rev. Lett. 111 217204

    [15]

    Jungfleisch M B, Chumak A V, Kehlberger A, Lauer V, Kim D H, Onbasli M C, Ross C A, Kläui M, Hillebrands B 2015 Phys. Rev. B 91 134407

    [16]

    Zhang W, Jungfleisch M B, Jiang W J, Sklenar J, Fradin F Y, Pearson J E, Ketterson J B, Hoffmann A 2015 J. Appl. Phys. 117 172610

    [17]

    Nan T X, Emori S, Boone C T, Wang X J, Oxholm T M, Jones J G, Howe B M, Brown G J, Sun N X 2015 Phys. Rev. B 91 214416

    [18]

    Deorani P, Yang H 2013 Appl. Phys. Lett. 103 232408

    [19]

    Shikoh E, Ando K, Kubo K, Saitoh E, Shinjo T, Shiraishi M 2013 Phys. Rev. Lett. 110 127201

    [20]

    Dushenko S, Koike M, Ando Y, Shinjo T, Myronov M, Shiraishi M 2015 Phys. Rev. Lett. 114 196602

    [21]

    Ando K, Saitoh E 2012 Nat. Commun. 3 629

    [22]

    Ando Y, Ichiba K, Yamada S, Shikoh E, Shinjo T, Hamaya K, Shiraishi M 2013 Phys. Rev. B 88 140406

    [23]

    Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W, Hu A, Yang Y, Tang D M, Zhang B S, Ding H F 2012 Phys. Rev. B 85 214423

    [24]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555

    [25]

    Mukherjee S S, Deorani P, Kwon J H, Yang H 2012 Phys. Rev. B 85 094416

    [26]

    Soh W T, Peng B, Chai G Z, Ong C K 2014 Rev. Sci. Instrum. 85 026109

    [27]

    Soh W T, Peng B, Ong C K 2014 J. Phys. D: Appl. Phys. 47 285001

    [28]

    Gui Y S, Bai L H, Hu C M 2013 Sci. China 56 124

    [29]

    Kittel C 1947 Phys. Rev. 71 270

    [30]

    Chen L, Ikeda S, Matsukura F, Ohno H 2014 Appl. Phys. Express 7 013002

    [31]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E W, Bader S E, Hoffmann A 2010 Phys. Rev. Lett. 104 046601

  • [1] 王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰. 磁场诱导的TmFeO3单晶自旋重取向.  , 2024, 73(1): 017801. doi: 10.7498/aps.73.20231322
    [2] 程宏阳, 马倩茹, 徐浩然, 张慧萍, 金钻明, 何为, 彭滟. 硅基自旋光电子学太赫兹辐射源特性.  , 2024, 73(16): 167801. doi: 10.7498/aps.73.20240703
    [3] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源.  , 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [4] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究.  , 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [5] 陈亚博, 杨晓阔, 危波, 吴瞳, 刘嘉豪, 张明亮, 崔焕卿, 董丹娜, 蔡理. 非对称条形纳磁体的铁磁共振频率和自旋波模式.  , 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [6] 何冬梅, 彭斌, 张万里, 张文旭. 掺铌SrTiO3中的逆自旋霍尔效应.  , 2019, 68(10): 106101. doi: 10.7498/aps.68.20190118
    [7] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射.  , 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [8] 涂宽, 韩满贵. 磁性多孔纳米片微波磁导率的微磁学研究.  , 2015, 64(23): 237501. doi: 10.7498/aps.64.237501
    [9] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振.  , 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [10] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜.  , 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [11] 顾文娟, 潘靖, 胡经国. 垂直场下磁性薄膜中的铁磁共振现象.  , 2012, 61(16): 167501. doi: 10.7498/aps.61.167501
    [12] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性.  , 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [13] 汤乃云. GaMnN铁磁共振隧穿二极管自旋电流输运以及极化效应的影响.  , 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [14] 荣建红, 云国宏. 外应力场下双层铁磁薄膜中的铁磁共振性质.  , 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [15] 潘 靖, 周 岚, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的自旋波.  , 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [16] 潘 靖, 马 梅, 周 岚, 胡经国. 外应力场下铁磁/反铁磁双层膜系统的铁磁共振性质.  , 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [17] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究.  , 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [18] 杜 军, 孙 亮, 盛雯婷, 游 彪, 鹿 牧, 胡 安, M. M. Corte-Real, J. Q. Xiao. 纳米复合Fe-R-O(R=Hf Nd Dy)薄膜面内铁磁共振研究.  , 2004, 53(7): 2352-2356. doi: 10.7498/aps.53.2352
    [19] 侯碧辉, 刘凤艳, 郭慧群. 磁共振法研究(Fe1-xCox)84Zr3.5Nb 3.5B8Cu1纳米晶薄带的磁各向异性.  , 2003, 52(10): 2622-2626. doi: 10.7498/aps.52.2622
    [20] 蒲富恪, 郑庆祺. 自旋波之间的散射对铁磁共振曲线的影响.  , 1962, 18(2): 81-90. doi: 10.7498/aps.18.81
计量
  • 文章访问数:  7284
  • PDF下载量:  349
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-31
  • 修回日期:  2015-09-06
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map