搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双缘调制的数字电压型控制Buck变换器离散迭代映射建模与动力学分析

刘啸天 周国华 李振华 陈兴

引用本文:
Citation:

基于双缘调制的数字电压型控制Buck变换器离散迭代映射建模与动力学分析

刘啸天, 周国华, 李振华, 陈兴

Discrete iterative-map modeling and dynamical analysis of digital voltage-mode controlled buck converter with dual-edge modulation

Liu Xiao-Tian, Zhou Guo-Hua, Li Zhen-Hua, Chen Xing
PDF
导出引用
  • 建立了双缘调制数字电压型控制Buck变换器的离散迭代映射模型. 在该模型的基础上, 详细研究了双缘调制数字电压型控制Buck变换器的非线性动力学行为. 以输入电压、负载电阻等电路参数作为分岔参数, 绘制了输出电压和电感电流的分岔图, 并通过分岔图的分析发现了两种相似却又不同的Hopf分岔现象. 采用庞加莱截面、时域仿真波形和相轨图, 对比分析了两种不同的Hopf分岔和低频振荡现象, 并引入离散迭代映射模型的雅克比矩阵的特征值分析方法, 从理论上证明了两种Hopf分岔的存在性和差异性. 首次观察到基于双缘调制的数字电压型控制Buck变换器出现了奇数倍周期分岔现象, 并通过时域仿真波形和相轨图验证了该现象的真实性. 为更加接近实际电路, 考虑电容和电感的等效串联电阻, 使用Psim进行仿真, 其结果与理论仿真结果基本一致, 验证了理论仿真的正确性.
    The operation principle of digital voltage-mode controlled buck converter with dual-edge modulation is analyzed in this paper. Based on the state equation of buck converter and six possible evolutions in one switching cycle, the discrete iterative-map model of digital voltage-mode controlled buck converter with dual-edge modulation is established. Ignoring the quantization error of analog-digital converter and on the basis of its discrete iterative-map model, the nonlinear dynamical behavior of digital voltage-mode controlled buck converter with dual-edge modulation is investigated in detail. Taking the input voltage and the load resistance as bifurcation parameters, the output voltage bifurcation diagram and the inductor current bifurcation diagram are plotted. Through analyzing the bifurcation diagrams, it is indicated that there are two kinds of similar but different Hopf bifurcation phenomena. By use of Poincar section, time-domain simulation waveforms and phase portraits, two different Hopf bifurcations and low-frequency oscillation phenomena are compared and studied. Observing the inductor current and capacitor voltage waveforms respectively, it is obviously found that their oscillation frequencies and amplitudes are different, the shapes of two Poincar$ sections and phase portraits are also different. In order to verify the correctness of the simulation and theoretical analysis, the eigenvalues of Jacobian matrix of the discrete iterative map model are introduced and solved in two kinds of stable evolutions. Through analyzing variation of eigenvalues of Jacobi matrix with input voltage, the existence and difference of two kinds of Hopf bifurcation phenomena are proved theoretically. Moreover, it is observed in this paper that the odd period-doubling bifurcation phenomenon exists in digital voltage-mode controlled buck converter with dual-edge modulation for the first time, where the operation state of the buck converter turns from period-one into period-three. Its authenticity is verified by using the time-domain simulation waveforms and phase portraits. In order to approach to the actual circuit, the equivalent series resistances of capacitor and inductor are considered. The actual circuit is simulated by using the software Psim. A comparison shows that there are little differences between the theoretical simulation and the actual circuit simulation. So the theoretical simulation can be used to analyze the performances of the actual circuit. The research results in this paper have guiding significance and practical value for designing the digital voltage-mode controlled buck converter with dual-edge modulation.
      通信作者: 周国华, ghzhou-swjtu@163.com
    • 基金项目: 国家自然科学基金(批准号: 61371033)、全国优秀博士学位论文作者专项资金(批准号: 201442)、霍英东教育基金会高等院校青年教师基金(批准号: 142027)和四川省青年科技基金(批准号: 2014JQ0015, 2013JQ0033)资助的课题.
      Corresponding author: Zhou Guo-Hua, ghzhou-swjtu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61371033), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201442), the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142027), and the Sichuan Provincial Youth Science and Technology Fund, China (Grant Nos. 2014JQ0015, 2013JQ0033).
    [1]

    Zhou G H, Xu J P, Bao B C 2010 Acta Phys. Sin. 59 2272 (in Chinese) [周国华, 许建平, 包伯成 2010 59 2272]

    [2]

    Maity S, Tripathy D, Bhattacharya T K, Banerjee S 2007 IEEE Trans. Circuit Syst. I 54 1120

    [3]

    Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509

    [4]

    Deivasundari P, Uma G, Poovizhi R 2013 IET Power Electr. 6 763

    [5]

    Xie F, Yang R, Zhang B 2011 IEEE Trans. Circuit Syst. I 58 2269

    [6]

    Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 2842 (in Chinese) [王发强, 张浩, 马西奎 2008 57 2842]

    [7]

    Dai D, Li S N, Zhang B, Ma X K 2008 Proc. CSEE 28 1 (in Chinese) [戴栋, 李胜男, 张波, 马西奎 2008 中国电机工程学报 28 1]

    [8]

    Aroudi A E, Benadero L, Toribio E, Olivar G 1999 IEEE Trans. Circuit Syst. I 46 1374

    [9]

    Aroudi A E, Benadero L, Toribio E, Machiche S 2000 Int. J. Bifurcat. Chaos 10 359

    [10]

    Zhang X T, Ma X K, Zhang H 2008 Acta Phys. Sin. 57 6174 (in Chinese) [张笑天, 马西奎, 张浩 2008 57 6174]

    [11]

    Huang M, Wong S C, Tse C K, Ruan X B 2013 IEEE Trans. Circuit Syst. I 60 1062

    [12]

    Aroudi A E, Leyva R 2001 IEEE Trans. Circuit Syst. I 48 967

    [13]

    Zhou G H, Bao B C, Xu J P 2013 Int. J. Bifurcat. Chaos 23 1350062

    [14]

    Zhou Y F, Tse C K, Qiu S S, Chen J N 2005 Chin. Phys. 14 0061

    [15]

    Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503

    [16]

    Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505

    [17]

    He S Z, Xu J P, Zhou G H, Bao B C, Yan T S 2015 Chin. J. Electron. 24 295

    [18]

    Xie F, Zhang B, Yang R 2013 IEEE Tran. Ind. Electron. 60 3145

    [19]

    Zhao Y B, Feng J C, Chen Y F 2013 Int. J. Bifurcat. Chaos 23 1350113

    [20]

    Zhou G H 2011 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese) [周国华 2011 博士学位论文 (成都: 西南交通大学)]

    [21]

    Tse C K 2004 CRC Press Data pp96-132

  • [1]

    Zhou G H, Xu J P, Bao B C 2010 Acta Phys. Sin. 59 2272 (in Chinese) [周国华, 许建平, 包伯成 2010 59 2272]

    [2]

    Maity S, Tripathy D, Bhattacharya T K, Banerjee S 2007 IEEE Trans. Circuit Syst. I 54 1120

    [3]

    Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509

    [4]

    Deivasundari P, Uma G, Poovizhi R 2013 IET Power Electr. 6 763

    [5]

    Xie F, Yang R, Zhang B 2011 IEEE Trans. Circuit Syst. I 58 2269

    [6]

    Wang F Q, Zhang H, Ma X K 2008 Acta Phys. Sin. 57 2842 (in Chinese) [王发强, 张浩, 马西奎 2008 57 2842]

    [7]

    Dai D, Li S N, Zhang B, Ma X K 2008 Proc. CSEE 28 1 (in Chinese) [戴栋, 李胜男, 张波, 马西奎 2008 中国电机工程学报 28 1]

    [8]

    Aroudi A E, Benadero L, Toribio E, Olivar G 1999 IEEE Trans. Circuit Syst. I 46 1374

    [9]

    Aroudi A E, Benadero L, Toribio E, Machiche S 2000 Int. J. Bifurcat. Chaos 10 359

    [10]

    Zhang X T, Ma X K, Zhang H 2008 Acta Phys. Sin. 57 6174 (in Chinese) [张笑天, 马西奎, 张浩 2008 57 6174]

    [11]

    Huang M, Wong S C, Tse C K, Ruan X B 2013 IEEE Trans. Circuit Syst. I 60 1062

    [12]

    Aroudi A E, Leyva R 2001 IEEE Trans. Circuit Syst. I 48 967

    [13]

    Zhou G H, Bao B C, Xu J P 2013 Int. J. Bifurcat. Chaos 23 1350062

    [14]

    Zhou Y F, Tse C K, Qiu S S, Chen J N 2005 Chin. Phys. 14 0061

    [15]

    Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503

    [16]

    Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505

    [17]

    He S Z, Xu J P, Zhou G H, Bao B C, Yan T S 2015 Chin. J. Electron. 24 295

    [18]

    Xie F, Zhang B, Yang R 2013 IEEE Tran. Ind. Electron. 60 3145

    [19]

    Zhao Y B, Feng J C, Chen Y F 2013 Int. J. Bifurcat. Chaos 23 1350113

    [20]

    Zhou G H 2011 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese) [周国华 2011 博士学位论文 (成都: 西南交通大学)]

    [21]

    Tse C K 2004 CRC Press Data pp96-132

  • [1] 徐红梅, 金永镐, 金璟璇. 基于符号动力学的开关变换器时间不可逆性分析.  , 2014, 63(13): 130502. doi: 10.7498/aps.63.130502
    [2] 何圣仲, 周国华, 许建平, 吴松荣, 陈利. 输出电容时间常数对V2控制Buck变换器的动力学特性的影响.  , 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [3] 沙金, 许建平, 刘姝晗, 钟曙. 谷值电流型脉冲序列控制开关变换器及其能量建模研究.  , 2014, 63(9): 098401. doi: 10.7498/aps.63.098401
    [4] 吴松荣, 周国华, 王金平, 许建平, 何圣仲. 多频率控制开关变换器的自相似和混频现象分析.  , 2014, 63(2): 028401. doi: 10.7498/aps.63.028401
    [5] 钟曙, 沙金, 许建平, 许丽君, 周国华. 脉冲跨周期调制连续导电模式Buck变换器低频波动现象研究.  , 2014, 63(19): 198401. doi: 10.7498/aps.63.198401
    [6] 雷博, 肖国春, 吴旋律. 一种数字控制三相逆变电路的局部振荡行为分析.  , 2013, 62(4): 040502. doi: 10.7498/aps.62.040502
    [7] 吴旋律, 肖国春, 雷博. 数字控制单相全桥电压型逆变电路的改进离散迭代模型.  , 2013, 62(5): 050503. doi: 10.7498/aps.62.050503
    [8] 吴松荣, 何圣仲, 许建平, 周国华, 王金平. 电压型双频率控制开关变换器的动力学建模与多周期行为分析.  , 2013, 62(21): 218403. doi: 10.7498/aps.62.218403
    [9] 雷博, 肖国春, 吴旋律. 一种数字控制单相全桥逆变电路运动行为分析方法研究.  , 2012, 61(9): 090501. doi: 10.7498/aps.61.090501
    [10] 包伯成, 杨平, 马正华, 张希. 电路参数宽范围变化时电流控制开关变换器的动力学研究.  , 2012, 61(22): 220502. doi: 10.7498/aps.61.220502
    [11] 秦明, 许建平, 高玉, 王金平. 基于电流基准的开关变换器脉冲序列控制方法.  , 2012, 61(3): 030204. doi: 10.7498/aps.61.030204
    [12] 王金平, 许建平, 徐杨军. 恒定导通时间控制buck变换器多开关周期振荡现象分析.  , 2011, 60(5): 058401. doi: 10.7498/aps.60.058401
    [13] 王发强, 马西奎, 闫晔. 不同开关频率下电压控制升压变换器中的Hopf分岔分析.  , 2011, 60(6): 060510. doi: 10.7498/aps.60.060510
    [14] 雷博, 肖国春, 吴旋律, 齐元瑞. 单相全桥DC-AC电压逆变电路数字控制中的振荡现象分析.  , 2011, 60(9): 090501. doi: 10.7498/aps.60.090501
    [15] 周国华, 许建平, 包伯成. 峰值/谷值电流型控制开关DC-DC变换器的对称动力学现象分析.  , 2010, 59(4): 2272-2280. doi: 10.7498/aps.59.2272
    [16] 包伯成, 周国华, 许建平, 刘中. 斜坡补偿电流模式控制开关变换器的动力学建模与分析.  , 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [17] 秦明, 许建平. 开关变换器多级脉冲序列控制研究.  , 2009, 58(11): 7603-7612. doi: 10.7498/aps.58.7603
    [18] 杨 汝, 张 波, 丘东元. 开关变换器离散子系统混沌点过程描述及EMI抑制.  , 2008, 57(3): 1389-1397. doi: 10.7498/aps.57.1389
    [19] 杨 汝, 张 波, 褚利丽. 开关变换器倍周期分岔精细层次结构及其普适常数研究.  , 2008, 57(5): 2770-2778. doi: 10.7498/aps.57.2770
    [20] 张笑天, 马西奎, 张 浩. 数字控制DC-DC Buck变换器中低频振荡现象分析.  , 2008, 57(10): 6174-6181. doi: 10.7498/aps.57.6174
计量
  • 文章访问数:  5964
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-28
  • 修回日期:  2015-07-09
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map