-
相对于传统的光学遥感, 多角度偏振遥感不仅可以获取辐射强度信息, 而且可以获取偏振强度信息. 基于多角度偏振卫星载荷观测的中国典型地物的偏振反射率数据, 获取了地表偏振双向反射模型Nadal模型的中国区域模型参数值. 在此基础上, 基于修正的Nadal模型研究了中国区域森林、草地、沙漠三种典型地物的多角度偏振特性. 研究表明: 1)各地物的偏振反射率均随着散射角的增大而减小, 随着太阳天顶角和卫星观测天顶角的增大而增大; 2)森林、草地和沙漠三种典型地表偏振反射率存在明显差别, 森林的偏振反射率最低, 草地的偏振反射率次之, 沙漠的偏振反射率大约为森林的两倍; 3)不同地物之间的偏振反射率差值均随着卫星观测天顶角和太阳天顶角的增大而增大. 研究结果可为基于多角度偏振遥感数据探测地表偏振特性和反演气溶胶参数提供先验知识.The surface polarized reflectance is able to fully reflect the physical characteristics of surface, such as vegetation classification, plant biomass estimation, leaf angle distribution and surface water content. The bidirectional polarization distribution function is a useful tool for quantitatively describing the surface polarized reflectance. The multi-angle polarized remote sensing reveals a significant advantage in capturing the radiation and polarization information. The polarization and directionality of the earth reflectance (POLDER) instrument is the only sensor which has provided a long-term trend of polarized measurements. Its combination of multi-spectral, polarization and multi-angle observations has considerable capability for retrieving ocean, land, cloud and aerosol properties. Until now, data obtained from POLDER has been widely used to study various surface bidirectional polarized reflectance models, especially Nadal model. However, parameters of Nadal model reveal a low accuracy in China region. In this study, the parameters of Nadal model suitable for China region are obtained and analyzed based on the POLDER-2 polarized reflectance data. Based on the modified parameters of Nadal model, polarized reflectance under different surface types is further analyzed. Our results show that the polarized reflectance retrieved from modified parameters of Nadal model reveals better correlation with the POLDER-2 products than the polarized reflectance from Nadal official parameters under different surface types. The polarization properties of three typical surfaces (forest, grassland and desert) are further investigated and reveal that 1) different surface polarized reflectances decrease with the increase of the scattering angle, and the polarized reflectance of the same object decreases as the normalized difference vegetation index increases; 2) significant discrepancies exist between the polarized reflectances of different surfaces, the polarized reflectance of forest is the lowest in the three surface types, then that of grass is the second lowest, and desert reveal the largest value (about twice that of forest), 3) the discrepancies of polarized reflectance between different surfaces have an increasing trend as satellite view zenith angle increases. This study will provide a priori knowledge for the detection of surface polarization properties and aerosol parameters based on multi-angle polarization remote sensing data, and also establish a good foundation for the quantitative applications of GF-5 satellite multi-angle polarization imager to be launched soon in China.
-
Keywords:
- multi-angle polarization /
- polarization reflectance /
- Nadal model /
- remote sensing inversion
[1] Curran P J 1981 Remote Sens. Environ. 11 87
[2] Rondeaux G, Herman M 1991 Remote Sens. Environ. 38 63
[3] Curran P J 1978 Remote Sens. Environ. 7 305
[4] Herman M, Deuz J L, Devaux C, Goloub P, Bron F M, Tanr D 1997 J. Geophys. Res. 102 17039
[5] Deuz J L, Goloub P, Herman M, Marchand A, Perry G, Susana S, Tanr D 2000 J. Geophys. Res. 105 15329
[6] Deuz J L, Bron F M, Devaux C, Goloub P, Herman M, Lafrance B, Maignan F, Marchand A, Nadal F, Perry G, Tanr D 2001 J. Geophys. Res. 106 4913
[7] Cheng T H, Gu X F, Chen L F, Yu T, Tian G L 2010 J. Atmos. Sci. 67 749
[8] Peers F, Waquet F, Cornet C, Dubuisson P, Ducos F, Goloub P, Szczap F, Tanr D, Thieuleux F 2015 Atmos. Chem. Phys. 15 4179
[9] Stap F A, Hasekamp O P, Rckmann T 2015 Atmos. Meas. Tech. 8 1287
[10] Bron F M, Tanre D, Lecomte P, Herman M 1995 IEEE Trans. Geosci. Remote 33 487
[11] Nadal F, Bron F M 1999 IEEE Trans. Geosci. Remote 37 1709
[12] Maignan F, Bron F M, Fdlea E, Bouvier M 2009 Remote Sens. Environ. 113 2642
[13] Litvinov P, Hasekamp O, Cairns B 2011 Remote Sens. Environ. 115 781
[14] Zhao Y S, Huang F, Jin L, Jin X F, Zhou S X 2000 J. Remote Sens. 4 131 (in Chinese) [赵云升, 黄方, 金伦, 金锡锋, 周淑香 2000 遥感学报 4 131]
[15] Zhao Y S, Jin L, Zhang H B, Song K S 2000 J. Northeast Norm. Univ. (Nat. Sci.) 32 93 (in Chinese) [赵云升, 金伦, 张洪波, 宋开山 2000 东北师大学报 (自然科学版) 32 93]
[16] Zhao Y S, Jin L, Song K S, Wang W M 2000 J. Northeast Norm. Univ. (Nat. Sci.) 32 103 (in Chinese) [赵云升, 金伦, 宋开山, 王维民 2000 东北师大学报 (自然科学版) 32 103]
[17] Zhao Y S, Wu T X, Song K S, Jia L, Zhao L L 2005 Min. Res. Dev. 25 63 (in Chinese) [赵云升, 吴太夏, 宋开山, 贾玲, 赵丽丽 2005 矿业研究与开发 25 63]
[18] Zhao H 2004 Ph. D. Dissertation (Beijing: Peking University) (in Chinese) [赵虎 2004 博士学位论文 (北京: 北京大学)]
[19] Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2011 Sci. China: Earth Sci. 54 1199
[20] Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2012 Acta Phys. Sin. 61 077801 (in Chinese) [谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭靖 2012 61 077801]
[21] Wang H, Sun X B, Sun B, Hong J 2014 Acta Opt. Sin. 34 0128002 (in Chinese) [王涵, 孙晓兵, 孙斌, 洪津 2014 光学学报 34 0128002]
[22] Zhao Z J, Zhao Y S 2014 Acta Phys. Sin. 63 187801 (in Chinese) [赵子傑, 赵云升 2014 63 187801]
[23] Loveland T R, Belward A S 1997 Int. J. Remote Sens. 18 3289
-
[1] Curran P J 1981 Remote Sens. Environ. 11 87
[2] Rondeaux G, Herman M 1991 Remote Sens. Environ. 38 63
[3] Curran P J 1978 Remote Sens. Environ. 7 305
[4] Herman M, Deuz J L, Devaux C, Goloub P, Bron F M, Tanr D 1997 J. Geophys. Res. 102 17039
[5] Deuz J L, Goloub P, Herman M, Marchand A, Perry G, Susana S, Tanr D 2000 J. Geophys. Res. 105 15329
[6] Deuz J L, Bron F M, Devaux C, Goloub P, Herman M, Lafrance B, Maignan F, Marchand A, Nadal F, Perry G, Tanr D 2001 J. Geophys. Res. 106 4913
[7] Cheng T H, Gu X F, Chen L F, Yu T, Tian G L 2010 J. Atmos. Sci. 67 749
[8] Peers F, Waquet F, Cornet C, Dubuisson P, Ducos F, Goloub P, Szczap F, Tanr D, Thieuleux F 2015 Atmos. Chem. Phys. 15 4179
[9] Stap F A, Hasekamp O P, Rckmann T 2015 Atmos. Meas. Tech. 8 1287
[10] Bron F M, Tanre D, Lecomte P, Herman M 1995 IEEE Trans. Geosci. Remote 33 487
[11] Nadal F, Bron F M 1999 IEEE Trans. Geosci. Remote 37 1709
[12] Maignan F, Bron F M, Fdlea E, Bouvier M 2009 Remote Sens. Environ. 113 2642
[13] Litvinov P, Hasekamp O, Cairns B 2011 Remote Sens. Environ. 115 781
[14] Zhao Y S, Huang F, Jin L, Jin X F, Zhou S X 2000 J. Remote Sens. 4 131 (in Chinese) [赵云升, 黄方, 金伦, 金锡锋, 周淑香 2000 遥感学报 4 131]
[15] Zhao Y S, Jin L, Zhang H B, Song K S 2000 J. Northeast Norm. Univ. (Nat. Sci.) 32 93 (in Chinese) [赵云升, 金伦, 张洪波, 宋开山 2000 东北师大学报 (自然科学版) 32 93]
[16] Zhao Y S, Jin L, Song K S, Wang W M 2000 J. Northeast Norm. Univ. (Nat. Sci.) 32 103 (in Chinese) [赵云升, 金伦, 宋开山, 王维民 2000 东北师大学报 (自然科学版) 32 103]
[17] Zhao Y S, Wu T X, Song K S, Jia L, Zhao L L 2005 Min. Res. Dev. 25 63 (in Chinese) [赵云升, 吴太夏, 宋开山, 贾玲, 赵丽丽 2005 矿业研究与开发 25 63]
[18] Zhao H 2004 Ph. D. Dissertation (Beijing: Peking University) (in Chinese) [赵虎 2004 博士学位论文 (北京: 北京大学)]
[19] Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2011 Sci. China: Earth Sci. 54 1199
[20] Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2012 Acta Phys. Sin. 61 077801 (in Chinese) [谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭靖 2012 61 077801]
[21] Wang H, Sun X B, Sun B, Hong J 2014 Acta Opt. Sin. 34 0128002 (in Chinese) [王涵, 孙晓兵, 孙斌, 洪津 2014 光学学报 34 0128002]
[22] Zhao Z J, Zhao Y S 2014 Acta Phys. Sin. 63 187801 (in Chinese) [赵子傑, 赵云升 2014 63 187801]
[23] Loveland T R, Belward A S 1997 Int. J. Remote Sens. 18 3289
计量
- 文章访问数: 6165
- PDF下载量: 280
- 被引次数: 0