搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高增益低雷达散射截面的新型圆极化微带天线设计

丛丽丽 付强 曹祥玉 高军 宋涛 李文强 赵一 郑月军

引用本文:
Citation:

一种高增益低雷达散射截面的新型圆极化微带天线设计

丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军

A novel circularly polarized patch antenna with low radar cross section and high-gain

Cong Li-Li, Fu Qiang, Cao Xiang-Yu, Gao Jun, Song Tao, Li Wen-Qiang, Zhao Yi, Zheng Yue-Jun
PDF
导出引用
  • 设计了一种基于人工电磁材料覆层的高增益低雷达散射截面(radar cross section, RCS)圆极化微带天线. 人工电磁材料覆层是由介质板及其两侧的人工周期表面构成, 上表面是加载集总电阻的方环贴片, 具有宽带吸波特性; 下表面是开条带缝和圆环缝的金属贴片, 具有部分反射特性. 将其加载到圆极化微带天线上方, 通过覆层上表面的电阻可吸收入射的雷达波, 结合下表面与接地板构成Fabry-Perot谐振腔的多次反射, 可实现圆极化微带天线辐射和散射性能的同时改善. 实测结果表明: 加载人工电磁材料覆层后, 天线的相对轴比带宽由5.9%扩展为7.1%; 天线增益在整个工作频带内都得到了提升, 最大提高了6.61 dB; 天线RCS在宽频带宽角域内实现了明显的减缩, 在天线工作频带内也实现了3 dB以上减缩. 实测结果与仿真结果符合较好.
    A novel circularly polarized patch antenna, which can achieve low radar cross section (RCS) and high gain performance simultaneously, is designed on the basis of metamaterial superstrate. The novelty of the design is that this antenna can possess the absorbing characteristic and the partially reflective characteristic simultaneously in an integrated structure. The proposed superstrate is composed of two metallic layers with different periodic patterns on both sides of a dielectric substrate. Through constructing different metallic patterns on the two sides of the superstrate, the upper and bottom surfaces of the superstrate will have different transmission and reflection performances when illuminated by an incident plane wave. The low RCS characteristic is dependent on the upper surface, while the gain enhancement of the resonator antenna relies on the reflection coefficient of the bottom surface. The upper surface consisting of a periodic metallic square loop with four lumped resistances on the four sides of the loop is of low reflection and transmission, and the bottom surface composed of a metallic plane with periodic slots is of high reflection and low transmission. When the superstrate is located at approximately half a wavelength above the ground plane of the circularly polarized patch antenna, the upper surface will absorb most of the incident wave by converting the electromagnetic wave into heat as Ohm loss to reduce the antenna RCS, and the bottom surface will form a Fabry-Perot resonance cavity with the ground plane of the antenna to achieve high gain and high directivity by multiple reflections between the bottom surface and the ground plane. The measured results show that with using the superstrate, the relative axial ratio bandwidth of the circularly polarized patch antenna extends from 5.9% to 7.1%, and the high gain performance is achieved in the whole working frequency band, which can be enhanced by 6.61 dB at most. Meanwhile, the RCS of the proposed antenna is dramatically reduced in a wide angle range and a broad frequency band covering a range from 2 to 14 GHz. The measured results are in good agreement with the simulated ones, which further verifies the correctness and effectiveness of the proposed method.
      通信作者: 曹祥玉, gjgj9694@163.com
    • 基金项目: 国家自然科学基金(批准号: 61271100, 61471389)、陕西省自然科学基础研究计划 (批准号: 2012JM8003)和空军工程大学信息与导航学院博士创新基金(批准号: KGD103201402)资助的课题.
      Corresponding author: Cao Xiang-Yu, gjgj9694@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271100, 61471389), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2012JM8003), and the Doctoral Innovation Foundation of Information and Navigation College of Air Force Engineering University, China (Grant No. KGD103201402).
    [1]

    Jia Y T, Liu Y, Gong S, Hong T, Yu D 2013 Prog. Electrom. Res. Lett. 37 11

    [2]

    Jiang W, Liu Y, Gong S, Hong T 2009 IEEE Antennas Wireless Propag. Lett. 8 1275

    [3]

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 62 064103]

    [4]

    Li S J, Cao X Y, Gao J, Zheng Q R, Yang Q, Zhang Z, Zhang H M 2013 Acta Phys. Sin. 62 244101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 杨群, 张昭, 张焕梅 2013 62 244101]

    [5]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163

    [6]

    Yang J, Shen Z 2007 IEEE Antennas Wireless Propag. Lett. 6 388

    [7]

    Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin. 63 224102 (in Chinese) [郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群 2014 63 224102]

    [8]

    Zheng Y J, Gao J, Cao X Y, Li S J, Li W Q 2015 Microw. Opt. Tech. Lett. 57 1738

    [9]

    Teruhisa N, Takeshi F 2011 IEEE Trans. Antennas Propag. 59 2103

    [10]

    Nasimuddin, Chen Z N, Qing X 2010 IEEE Trans. Antennas Propag. 58 2112

    [11]

    Chang T N, Lin J M 2011 IEEE Trans. Antennas Propag. 59 3057

    [12]

    Heidari A A, Heyrani M, Nakhkash M 2009 Prog. Electromagn. Res. (USA) 92 195

    [13]

    Weily A R, Guo Y J 2009 IEEE Trans. Antennas Propag. 57 2862

    [14]

    Zhu H L, Cheung S W, Liu X H, Yuk T I 2014 IEEE Trans. Antennas Propag. 62 2891

    [15]

    Vaidya A R, Gupta R K, Mishra S K, Mukherjee J 2014 IEEE Antennas Wireless Propag. Lett. 13 431

    [16]

    Orr R, Goussetis G, Fusco V 2014 IEEE Trans. Antennas Propag. 62 19

    [17]

    Yi H, Qu S W 2013 IEEE Antennas Wireless Propag. Lett. 12 1149

    [18]

    Zhu H L, Cheung S W, Chung K L, Yuk T I 2013 IEEE Trans. Antennas Propag. 61 4615

    [19]

    Liu N W, Zhang Z Y, Zhao J Y, Fu G, Yao Y L 2014 Microw. Opt. Tech. Lett. 56 1274

    [20]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202

    [21]

    Zhang H L, Hu B J, Zhang X Y 2012 Chin. Phys. B 21 027701

    [22]

    Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagnet. Waves Appl. 27 1077

    [23]

    Jiang W, Zhang Y, Hong T, Deng Z B 2013 Chin. J. Radio Sci. 28 810 (in Chinse) [姜文, 张扬, 洪涛, 邓兆斌 2013 电波科学学报 28 810]

    [24]

    Hong T, Jiang W, Gong S X, Liu Y 2012 J. Electromagnet. Waves Appl. 26 1947

    [25]

    Jiang W, Hong T, Gong S X 2013 Int. J. Antenna. Propag. 2013 735847

    [26]

    Pan W B, Cheng H, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945

  • [1]

    Jia Y T, Liu Y, Gong S, Hong T, Yu D 2013 Prog. Electrom. Res. Lett. 37 11

    [2]

    Jiang W, Liu Y, Gong S, Hong T 2009 IEEE Antennas Wireless Propag. Lett. 8 1275

    [3]

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 62 064103]

    [4]

    Li S J, Cao X Y, Gao J, Zheng Q R, Yang Q, Zhang Z, Zhang H M 2013 Acta Phys. Sin. 62 244101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 杨群, 张昭, 张焕梅 2013 62 244101]

    [5]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163

    [6]

    Yang J, Shen Z 2007 IEEE Antennas Wireless Propag. Lett. 6 388

    [7]

    Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin. 63 224102 (in Chinese) [郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群 2014 63 224102]

    [8]

    Zheng Y J, Gao J, Cao X Y, Li S J, Li W Q 2015 Microw. Opt. Tech. Lett. 57 1738

    [9]

    Teruhisa N, Takeshi F 2011 IEEE Trans. Antennas Propag. 59 2103

    [10]

    Nasimuddin, Chen Z N, Qing X 2010 IEEE Trans. Antennas Propag. 58 2112

    [11]

    Chang T N, Lin J M 2011 IEEE Trans. Antennas Propag. 59 3057

    [12]

    Heidari A A, Heyrani M, Nakhkash M 2009 Prog. Electromagn. Res. (USA) 92 195

    [13]

    Weily A R, Guo Y J 2009 IEEE Trans. Antennas Propag. 57 2862

    [14]

    Zhu H L, Cheung S W, Liu X H, Yuk T I 2014 IEEE Trans. Antennas Propag. 62 2891

    [15]

    Vaidya A R, Gupta R K, Mishra S K, Mukherjee J 2014 IEEE Antennas Wireless Propag. Lett. 13 431

    [16]

    Orr R, Goussetis G, Fusco V 2014 IEEE Trans. Antennas Propag. 62 19

    [17]

    Yi H, Qu S W 2013 IEEE Antennas Wireless Propag. Lett. 12 1149

    [18]

    Zhu H L, Cheung S W, Chung K L, Yuk T I 2013 IEEE Trans. Antennas Propag. 61 4615

    [19]

    Liu N W, Zhang Z Y, Zhao J Y, Fu G, Yao Y L 2014 Microw. Opt. Tech. Lett. 56 1274

    [20]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202

    [21]

    Zhang H L, Hu B J, Zhang X Y 2012 Chin. Phys. B 21 027701

    [22]

    Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagnet. Waves Appl. 27 1077

    [23]

    Jiang W, Zhang Y, Hong T, Deng Z B 2013 Chin. J. Radio Sci. 28 810 (in Chinse) [姜文, 张扬, 洪涛, 邓兆斌 2013 电波科学学报 28 810]

    [24]

    Hong T, Jiang W, Gong S X, Liu Y 2012 J. Electromagnet. Waves Appl. 26 1947

    [25]

    Jiang W, Hong T, Gong S X 2013 Int. J. Antenna. Propag. 2013 735847

    [26]

    Pan W B, Cheng H, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945

  • [1] 吴柔兰, 李九生. 线极化与圆极化波均可吸收的太赫兹超表面.  , 2023, 72(5): 057802. doi: 10.7498/aps.72.20221832
    [2] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计.  , 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [3] 陈展斌, 董晨钟. 超精细结构效应对辐射光谱圆极化特性的影响.  , 2018, 67(19): 193401. doi: 10.7498/aps.67.20180322
    [4] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [5] 张晨, 曹祥玉, 高军, 李思佳, 郑月军. 一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线.  , 2016, 65(13): 134205. doi: 10.7498/aps.65.134205
    [6] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线.  , 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [7] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用.  , 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [8] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究.  , 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [9] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证.  , 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [10] 王丛屹, 徐成, 伍瑞新. 用最小结构单元频率选择表面实现大入射角宽频带的透波材料.  , 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [11] 李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉. 一种具有吸波和相位相消特性的共享孔径雷达吸波材料.  , 2014, 63(12): 124101. doi: 10.7498/aps.63.124101
    [12] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析.  , 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [13] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究.  , 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [14] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究.  , 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [15] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计.  , 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [16] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体.  , 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [17] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究.  , 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [18] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究.  , 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [19] 王争, 赵新杰, 何明, 周铁戈, 岳宏卫, 阎少林. 嵌入到Fabry-Perot谐振腔的双晶约瑟夫森结阵列的阻抗匹配和相位锁定研究.  , 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [20] 李民权, 陶小俊, 赵 瑾, 吴先良. 基于辛Runge-Kutta-Nystrom方法的雷达散射截面计算.  , 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
计量
  • 文章访问数:  6684
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-14
  • 修回日期:  2015-07-08
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map