搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hubbard模型中的相位弦效应与交互Chern-Simons理论

张龙 翁征宇

引用本文:
Citation:

Hubbard模型中的相位弦效应与交互Chern-Simons理论

张龙, 翁征宇

Phase string effect and mutual Chern-Simons theory of Hubbard model

Zhang Long, Weng Zheng-Yu
PDF
导出引用
  • 费米子符号在费米液体理论中至关重要. 然而, 在Mott绝缘体中, 很强的电子Coulomb相互作用抑制了体系的电荷涨落并消除了电子交换带来的费米子符号问题. 本文首先回顾二分晶格上Hubbard模型的相位弦理论, 从弱关联的费米液体到强关联的反铁磁Mott绝缘体的转变可以由此得到统一理解. 在任意Coulomb作用强度U下, 我们首先导出Hubbard模型的严格的符号结构. 在小U极限下, 它回到通常的费米子符号; 在大U极限下, 它给出了t-J模型的相位弦符号. 在半满情形下, 我们构造了一种电子分数化的表象, 其中, 电荷子与自旋子通过演生的交互Chern-Simons规范场相互耦合. 由此导出的基态波函数拟设与低能有效理论可以定性刻画Hubbard模型的基态相图. 在弱关联区域, 费米液体的准粒子由电荷子与自旋子的束缚态构成, 其长程相位相干性取决于背景自旋的关联性质. 体系的Mott转变可以通过电荷子打开能隙或是通过自旋子玻色凝聚来实现.
    The fermion sign plays a dominant role in Fermi liquid theory. However, in Mott insulators, the strong Coulomb interaction suppresses the charge fluctuations and eliminates the fermion signs due to electron permutation. In this article, we first review the phase string theory of the Hubbard model for a bipartite lattice, which unifies the Fermi liquid at weak coupling and the antiferromagnetic Mott insulator at strong coupling. We first derive the exact sign structure of the Hubbard model for an arbitrary Coulomb interaction U. In small U limit, the conventional fermion sign is restored, while at large U limit, it leads to the phase string sign structure of the t-J model. For half filling, we construct an electron fractionalization representation, in which chargons and spinons are coupled to each other via emergent mutual Chern-Simons gauge fields. The corresponding ground state ansatz and low energy effective theory capture the ground state phase diagram of the Hubbard model qualitatively. For weak coupling regime, the Fermi liquid quasiparticle is formed by the bound state of a chargon and a spinon, and the long range phase coherence is determined by the background spin correlation. The Mott transition can be realized either by forming the chargon gap or by condensing the background spinons.
      通信作者: 翁征宇, weng@tsinghua.edu.cn
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2010CB923003) 资助的课题.
      Corresponding author: Weng Zheng-Yu, weng@tsinghua.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB923003).
    [1]

    Mott N F 1949 Proc. Phys. Soc. A 62 416

    [2]

    Hubbard J 1963 Proc. R. Soc. A Math. Phys. Eng. Sci. 276 238

    [3]

    Roth W 1958 Phys. Rev. 110 1333

    [4]

    Anderson P W 1987 Science 235 1196

    [5]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17

    [6]

    Wu K, Weng Z Y, Zaanen J 2008 Phys. Rev. B 77 155102

    [7]

    Sheng D N, Chen Y C, Weng Z Y 1996 Phys. Rev. Lett. 77 5102

    [8]

    Weng Z Y, Sheng D N, Chen Y C, Ting C S 1997 Phys. Rev. B 55 3894

    [9]

    Weng Z Y 2011 New J. Phys. 13 103039

    [10]

    Arovas D P, Auerbach A 1988 Phys. Rev. B 38 316

    [11]

    Auerbach A, Arovas D P 1988 Phys. Rev. Lett. 61 617

    [12]

    Zhang L, Weng Z Y 2014 Phys. Rev. B 90 165120

    [13]

    Yoshioka D 1989 J. Phys. Soc. Japan 58 32

    [14]

    Sarker S, Jayaprakash C, Krishnamurthy H R, Ma M 1989 Phys. Rev. B 40 5028

    [15]

    Affleck I, Marston J B 1988 Phys. Rev. B 37 3774

    [16]

    Marston J B, Affleck I 1989 Phys. Rev. B 39 11538

    [17]

    Rantner W, Wen X G 2002 Phys. Rev. B 66 144501

    [18]

    Marshall W 1955 Proc. R. Soc. London A 232 48

    [19]

    Yoshioka D 1989 J. Phys. Soc. Japan 58 1516

    [20]

    Weng Z Y, Muthukumar V N, Sheng D N, Ting C S 2001 Phys. Rev. B 63 075102

    [21]

    Zhu Z, Jiang H C, Qi Y, Tian C, Weng Z Y 2013 Sci. Rep. 3 2586

    [22]

    Liang S, Doucot B, Anderson P W 1988 Phys. Rev. Lett. 61 365

    [23]

    Kou S P, Qi X L, Weng Z Y 2005 Phys. Rev. B 71 235102

    [24]

    Ye P, Tian C S, Qi X L, Weng Z Y 2011 Phys. Rev. Lett. 106 147002

    [25]

    Ye P, Tian C S, Qi X L, Weng Z Y 2012 Nucl. Phys. B 854 815

    [26]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395

    [27]

    Kou S P, Levin M, Wen X G 2008 Phys. Rev. B 78 155134

    [28]

    Xu C, Sachdev S 2009 Phys. Rev. B 79 064405

    [29]

    Grover T, Senthil T 2008 Phys. Rev. Lett. 100 156804

    [30]

    Xu C, Sachdev S 2010 Phys. Rev. Lett. 105 057201

    [31]

    Zhang L, Weng Z Y 2015 unpublished

    [32]

    Oshikawa M 2000 Phys. Rev. Lett. 84 3370

    [33]

    Senthil T, Vishwanath A, Balents L, Sachdev S, Fisher M P A 2004 Science 303 1490

    [34]

    Senthil T, Balents L, Sachdev S, Vishwanath A, Fisher M P A 2004 Phys. Rev. B 70 144407

    [35]

    Herbut I F 2006 Phys. Rev. Lett. 97 146401

    [36]

    Herbut I F, Juričić V, Roy B 2009 Phys. Rev. B 79 085116

    [37]

    Assaad F F, Herbut I F 2013 Phys. Rev. X 3 031010

    [38]

    Anderson P W 1997 The theory of superconductivity in the high-Tc cuprate superconductors (NJ: Princeton University Press)

    [39]

    Moukouri S, Jarrell M 2001 Phys. Rev. Lett. 87 167010

    [40]

    Schäfer T, Geles F, Rost D, Rohringer G, Arrigoni E, Held K, Blmer N, Aichhorn M, Toschi A 2014 Phys. Rev. B 91 125109

    [41]

    Itou T, Oyamada A, Maegawa S, Tamura M, Kato R 2008 Phys. Rev. B 77 104413

    [42]

    Yamashita M, Nakata N, Senshu Y, Nagata M, Yamamoto H M, Kato R, Shibauchi T, Matsuda Y 2010 Science 328 1246

    [43]

    Yamashita S, Yamamoto T, Nakazawa Y, Tamura M, Kato R 2011 Nat. Commun. 2 275

    [44]

    Watanabe D, Yamashita M, Tonegawa S, Oshima Y, Yamamoto H M, Kato R, Sheikin I, Behnia K, Terashima T, Uji S, Shibauchi T, Matsuda Y 2012 Nat. Commun. 3 1090

    [45]

    Kanoda K, Kato R 2011 Annu. Rev. Condens. Matter Phys. 2 167

    [46]

    Shimizu Y, Miyagawa K, Kanoda K, Maesato M, Saito G 2006 Phys. Rev. B 73 140407

    [47]

    Yamashita S, Nakazawa Y, Oguni M, Oshima Y, Nojiri H, Shimizu Y, Miyagawa K, Kanoda K 2008 Nat. Phys. 4 459

    [48]

    Yamashita M, Nakata N, Kasahara Y, Sasaki T, Yoneyama N, Kobayashi N, Fujimoto S, Shibauchi T, Matsuda Y 2009 Nat. Phys. 5 44

    [49]

    Manna R S, de Souza M, Brhl A, Schlueter J A, Lang M 2010 Phys. Rev. Lett. 104 016403

  • [1]

    Mott N F 1949 Proc. Phys. Soc. A 62 416

    [2]

    Hubbard J 1963 Proc. R. Soc. A Math. Phys. Eng. Sci. 276 238

    [3]

    Roth W 1958 Phys. Rev. 110 1333

    [4]

    Anderson P W 1987 Science 235 1196

    [5]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17

    [6]

    Wu K, Weng Z Y, Zaanen J 2008 Phys. Rev. B 77 155102

    [7]

    Sheng D N, Chen Y C, Weng Z Y 1996 Phys. Rev. Lett. 77 5102

    [8]

    Weng Z Y, Sheng D N, Chen Y C, Ting C S 1997 Phys. Rev. B 55 3894

    [9]

    Weng Z Y 2011 New J. Phys. 13 103039

    [10]

    Arovas D P, Auerbach A 1988 Phys. Rev. B 38 316

    [11]

    Auerbach A, Arovas D P 1988 Phys. Rev. Lett. 61 617

    [12]

    Zhang L, Weng Z Y 2014 Phys. Rev. B 90 165120

    [13]

    Yoshioka D 1989 J. Phys. Soc. Japan 58 32

    [14]

    Sarker S, Jayaprakash C, Krishnamurthy H R, Ma M 1989 Phys. Rev. B 40 5028

    [15]

    Affleck I, Marston J B 1988 Phys. Rev. B 37 3774

    [16]

    Marston J B, Affleck I 1989 Phys. Rev. B 39 11538

    [17]

    Rantner W, Wen X G 2002 Phys. Rev. B 66 144501

    [18]

    Marshall W 1955 Proc. R. Soc. London A 232 48

    [19]

    Yoshioka D 1989 J. Phys. Soc. Japan 58 1516

    [20]

    Weng Z Y, Muthukumar V N, Sheng D N, Ting C S 2001 Phys. Rev. B 63 075102

    [21]

    Zhu Z, Jiang H C, Qi Y, Tian C, Weng Z Y 2013 Sci. Rep. 3 2586

    [22]

    Liang S, Doucot B, Anderson P W 1988 Phys. Rev. Lett. 61 365

    [23]

    Kou S P, Qi X L, Weng Z Y 2005 Phys. Rev. B 71 235102

    [24]

    Ye P, Tian C S, Qi X L, Weng Z Y 2011 Phys. Rev. Lett. 106 147002

    [25]

    Ye P, Tian C S, Qi X L, Weng Z Y 2012 Nucl. Phys. B 854 815

    [26]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395

    [27]

    Kou S P, Levin M, Wen X G 2008 Phys. Rev. B 78 155134

    [28]

    Xu C, Sachdev S 2009 Phys. Rev. B 79 064405

    [29]

    Grover T, Senthil T 2008 Phys. Rev. Lett. 100 156804

    [30]

    Xu C, Sachdev S 2010 Phys. Rev. Lett. 105 057201

    [31]

    Zhang L, Weng Z Y 2015 unpublished

    [32]

    Oshikawa M 2000 Phys. Rev. Lett. 84 3370

    [33]

    Senthil T, Vishwanath A, Balents L, Sachdev S, Fisher M P A 2004 Science 303 1490

    [34]

    Senthil T, Balents L, Sachdev S, Vishwanath A, Fisher M P A 2004 Phys. Rev. B 70 144407

    [35]

    Herbut I F 2006 Phys. Rev. Lett. 97 146401

    [36]

    Herbut I F, Juričić V, Roy B 2009 Phys. Rev. B 79 085116

    [37]

    Assaad F F, Herbut I F 2013 Phys. Rev. X 3 031010

    [38]

    Anderson P W 1997 The theory of superconductivity in the high-Tc cuprate superconductors (NJ: Princeton University Press)

    [39]

    Moukouri S, Jarrell M 2001 Phys. Rev. Lett. 87 167010

    [40]

    Schäfer T, Geles F, Rost D, Rohringer G, Arrigoni E, Held K, Blmer N, Aichhorn M, Toschi A 2014 Phys. Rev. B 91 125109

    [41]

    Itou T, Oyamada A, Maegawa S, Tamura M, Kato R 2008 Phys. Rev. B 77 104413

    [42]

    Yamashita M, Nakata N, Senshu Y, Nagata M, Yamamoto H M, Kato R, Shibauchi T, Matsuda Y 2010 Science 328 1246

    [43]

    Yamashita S, Yamamoto T, Nakazawa Y, Tamura M, Kato R 2011 Nat. Commun. 2 275

    [44]

    Watanabe D, Yamashita M, Tonegawa S, Oshima Y, Yamamoto H M, Kato R, Sheikin I, Behnia K, Terashima T, Uji S, Shibauchi T, Matsuda Y 2012 Nat. Commun. 3 1090

    [45]

    Kanoda K, Kato R 2011 Annu. Rev. Condens. Matter Phys. 2 167

    [46]

    Shimizu Y, Miyagawa K, Kanoda K, Maesato M, Saito G 2006 Phys. Rev. B 73 140407

    [47]

    Yamashita S, Nakazawa Y, Oguni M, Oshima Y, Nojiri H, Shimizu Y, Miyagawa K, Kanoda K 2008 Nat. Phys. 4 459

    [48]

    Yamashita M, Nakata N, Kasahara Y, Sasaki T, Yoneyama N, Kobayashi N, Fujimoto S, Shibauchi T, Matsuda Y 2009 Nat. Phys. 5 44

    [49]

    Manna R S, de Souza M, Brhl A, Schlueter J A, Lang M 2010 Phys. Rev. Lett. 104 016403

  • [1] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究.  , 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [2] 白刚, 林翠, 刘端生, 许杰, 李卫, 高存法. 取向相关的Pb(Zr0.52Ti0.48)O3外延薄膜的相图和介电性能.  , 2021, 70(12): 127701. doi: 10.7498/aps.70.20202164
    [3] 蒋永林, 何长春, 杨小宝. ScxY1–x Fe2合金固溶和V2x Fe2(1–x)Zr有序-无序转变的理论预测.  , 2021, 70(21): 213601. doi: 10.7498/aps.70.20210998
    [4] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究.  , 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [5] 高英俊, 罗志荣, 黄创高, 卢强华, 林葵. 晶体相场方法研究二维六角相向正方相结构转变.  , 2013, 62(5): 050507. doi: 10.7498/aps.62.050507
    [6] 王道俊. 氮化硼纳米片的电子结构和自旋调控.  , 2013, 62(5): 057302. doi: 10.7498/aps.62.057302
    [7] 郭灿, 王志军, 王锦程, 郭耀麟, 唐赛. 直接相关函数对双模晶体相场模型相图的影响.  , 2013, 62(10): 108104. doi: 10.7498/aps.62.108104
    [8] 史良马, 刘连忠, 王向贤, 朱仁义. 介观薄圆环中的间隙性超导.  , 2012, 61(15): 157401. doi: 10.7498/aps.61.157401
    [9] 王婵娟, 陈阿海, 高先龙. 受限一维无自旋费米子系统的性质研究.  , 2012, 61(12): 127501. doi: 10.7498/aps.61.127501
    [10] 孙春峰. 镶嵌正方晶格上Gauss模型的相图.  , 2012, 61(8): 086802. doi: 10.7498/aps.61.086802
    [11] 沈壮志, 林书玉. 声场中气泡运动的混沌特性.  , 2011, 60(10): 104302. doi: 10.7498/aps.60.104302
    [12] 邹维科, 孔祥木, 王春阳, 高中扬. 三维钻石型等级晶格上量子Heisenberg系统的临界性质.  , 2010, 59(7): 4874-4879. doi: 10.7498/aps.59.4874
    [13] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备.  , 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [14] 白克钊, 邝华, 刘慕仁, 孔令江. 开放边界条件下平面环行交叉路口交通流的相图研究.  , 2010, 59(9): 5990-5995. doi: 10.7498/aps.59.5990
    [15] 李启朗, 孙晓燕, 汪秉宏, 刘慕仁. 低速十字路口交通流模型相图.  , 2010, 59(9): 5996-6002. doi: 10.7498/aps.59.5996
    [16] 许 玲, 晏世雷. 横向随机晶场Ising模型的相图和磁化行为研究.  , 2007, 56(3): 1691-1696. doi: 10.7498/aps.56.1691
    [17] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响.  , 2006, 55(8): 4020-4025. doi: 10.7498/aps.55.4020
    [18] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图.  , 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [19] 吴 凡, 王太宏. 通过单电子泵实现对单电子运动的控制及其相图分析.  , 2003, 52(3): 696-702. doi: 10.7498/aps.52.696
    [20] 王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民. Sm-Co-Ti三元系相关系及某些单相化合物的结构与磁性.  , 2001, 50(4): 752-757. doi: 10.7498/aps.50.752
计量
  • 文章访问数:  6859
  • PDF下载量:  438
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-26
  • 修回日期:  2015-06-30
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map