搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟

高新强 沈俊 和晓楠 唐成春 戴巍 李珂 公茂琼 吴剑峰

引用本文:
Citation:

耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟

高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰

Numerical simulation of a hybrid magnetic refrigeration combined with high pressure Stirling regenerative refrigeration effect

Gao Xin-Qiang, Shen Jun, He Xiao-Nan, Tang Cheng-Chun, Dai Wei, Li Ke, Gong Mao-Qiong, Wu Jian-Feng
PDF
导出引用
  • 本文借助计算流体力学软件, 对复合磁制冷机进行整机数值模拟分析. 以复合磁制冷机为建模原形, 分别计算了主动式磁制冷循环以及复合磁制冷循环. 利用模型计算分析了利用系数, 工作频率对主动式磁制冷的制冷效果影响, 同时模拟计算了不同相位角、不同频率下的复合磁制冷机的制冷效果, 计算得到适合复合磁制冷循环的最佳匹配相位角. 模拟计算结果对后续实验台的设计搭建有很好的指导作用.
    Magnetic refrigeration is a cooling method based on the magnetocaloric effect, which uses solid magnetocaloric materials as refrigerant, and helium, water or other fluid as heat transfer fluids. Stirling refrigeration is a kind of mature gas regenerative cooling method, using helium gas as the refrigerant. These refrigerations have similar cycling characteristics, and are both safe, environmantal-friendly and high efficient cooling methods. Therefore, a hybrid magnetic refrigerator combined with Stirling gas refrigeration effect is proposed and designed. In our previous works for hybrid magnetic refrigeration, numerical simulation and experimental performance of the low-pressure hybrid magnetic refrigerator was carried out, and the cycling mechanism of hybrid magnetic refrigeration was also figured out. In this study, a numerical model for the high-pressure hybrid magnetic refrigeration cycle is established. The magnetic refrigeration materials are utilized as the regenerator matrix for both gas Stirling and active magnetic regenerative refrigeration in this model. Effects of gas Stirling and active magnetic regenerative refrigeration are combined to build a kind of high efficient refrigeration cycle. Ansys Fluent software is applied in this paper. Based on the physical model of hybrid refrigerator and the theories of magnetocaloric effect and numerical calculation of regenerator, computational fluid dynamics (CFD) model of high-pressure hybrid magnetic refrigerator is established. This paper describes the internal heat transfer mechanism of Stirling and magnetic refrigeration effect in an active regenerator. Some parameters of the model such as working frequency and utilization are analyzed and the best phase angle is figured out in order to couple these two cooling effects positively. Simulation results show that Stirling and magnetic cooling effects can be coupled positively at phase angle of 60o. Results also show that with increasing system pressure, which means to increase the utilization of the system, the system frequency can enhance the cooling performance of the system as well as improve the coefficient of performance (COP) of it. The results and analysis of the numerical model will be helpful for the construction of experimental prototype in our future work.
      Corresponding author: Shen Jun, jshen@mail.ipc.ac.cn;tangcc@hebut.edu.cn ; Tang Cheng-Chun, jshen@mail.ipc.ac.cn;tangcc@hebut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51322605, 51271192).
    [1]

    Shao Y Z, Xiong Z Y, Zhang J L, Zhang J X 1996 Acta Phys. Sin. 45 1749 (in Chinese) [邵元智, 熊正烨, 张介立, 张进修 1996 45 1749]

    [2]

    Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102 (in Chinese) [王永田, 刘宗德, 易军, 薛志勇 2012 61 056102]

    [3]

    Bjork R, Bahl C R H, Katter M 2010 J. Magn. Magn. Mater. 322 3882

    [4]

    Nellis G F, Smith J L Jr 1996 Advances in Cryogenic Engineering 41 1665

    [5]

    Yayama H, Hatta Y, Makimoto Y, Tomokiyo A 2000 Jpn. J. Appl. Phys. 39 4220

    [6]

    Kim Y, Jeong S 2011 Int. J. Refrig. 34 204

    [7]

    Zhang H, He X N, Shen J, Gong M Q, Wu J F 2013 Journal of Engineering Thermophysics 34 5 (in Chinese) [张弘, 和晓楠, 沈俊, 公茂琼, 吴剑峰 2013 工程热 34 5]

    [8]

    He X N, Gong M Q, Zhang H, Shen J, Dai W, Wu J F 2013 Journal of Engineering Thermophysics 34 1997 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 戴巍, 吴剑峰 2013 工程热 34 1997]

    [9]

    He X N, Gong M Q, Zhang H, Shen J, Wu J F 2013 Cryo. & Supercond. 41 13 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 吴剑峰 2013 低温与超导 41 13]

    [10]

    He X N, Gong M Q, Zhang H, Dai W, Shen J, Wu J F 2013 Int. J. Refrig. 36 1465

    [11]

    Nielsen K K, Bahl C R H, Smith A, Pryds N, Hattel J 2010 Int. J. Refrig. 33 753

    [12]

    Nielsen K K, Tusek J, Engelbrecht K, Schopfer S, Kitanovski A, Bahl C R H, Smith A, Pryds N, Poredos A 2010 Int. J. Refrig. 34 603

    [13]

    Silva D J, Ventura J, Araujo J P, Pereira A M 2014 Applied Energy 113 1149

    [14]

    Chiba Y, Smaili A, Mahmed C, Balli M, Sari O 2014 Int. J. Refrig. 37 36

    [15]

    Lionte S, Vasile C, Siroux M 2015 Appl. Therm. Eng. 75 871

    [16]

    Li P, Gong M Q, Yao G H, Wu J F 2006 Int. J. Refrig. 29 1259

    [17]

    Yu B F, Zhang Y, Gao Q, Yang D X 2006 Int. J. Refrig. 29 1348

    [18]

    Tao W Q 2001 Numerical Heat Transfer(Second Edition) (Xian: Xi'an Jiaotong University Press) p15 (in Chinese) [陶文铨 2001 数值传热学(第二版)(西安: 西安交通大学出版社)第15页]

  • [1]

    Shao Y Z, Xiong Z Y, Zhang J L, Zhang J X 1996 Acta Phys. Sin. 45 1749 (in Chinese) [邵元智, 熊正烨, 张介立, 张进修 1996 45 1749]

    [2]

    Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102 (in Chinese) [王永田, 刘宗德, 易军, 薛志勇 2012 61 056102]

    [3]

    Bjork R, Bahl C R H, Katter M 2010 J. Magn. Magn. Mater. 322 3882

    [4]

    Nellis G F, Smith J L Jr 1996 Advances in Cryogenic Engineering 41 1665

    [5]

    Yayama H, Hatta Y, Makimoto Y, Tomokiyo A 2000 Jpn. J. Appl. Phys. 39 4220

    [6]

    Kim Y, Jeong S 2011 Int. J. Refrig. 34 204

    [7]

    Zhang H, He X N, Shen J, Gong M Q, Wu J F 2013 Journal of Engineering Thermophysics 34 5 (in Chinese) [张弘, 和晓楠, 沈俊, 公茂琼, 吴剑峰 2013 工程热 34 5]

    [8]

    He X N, Gong M Q, Zhang H, Shen J, Dai W, Wu J F 2013 Journal of Engineering Thermophysics 34 1997 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 戴巍, 吴剑峰 2013 工程热 34 1997]

    [9]

    He X N, Gong M Q, Zhang H, Shen J, Wu J F 2013 Cryo. & Supercond. 41 13 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 吴剑峰 2013 低温与超导 41 13]

    [10]

    He X N, Gong M Q, Zhang H, Dai W, Shen J, Wu J F 2013 Int. J. Refrig. 36 1465

    [11]

    Nielsen K K, Bahl C R H, Smith A, Pryds N, Hattel J 2010 Int. J. Refrig. 33 753

    [12]

    Nielsen K K, Tusek J, Engelbrecht K, Schopfer S, Kitanovski A, Bahl C R H, Smith A, Pryds N, Poredos A 2010 Int. J. Refrig. 34 603

    [13]

    Silva D J, Ventura J, Araujo J P, Pereira A M 2014 Applied Energy 113 1149

    [14]

    Chiba Y, Smaili A, Mahmed C, Balli M, Sari O 2014 Int. J. Refrig. 37 36

    [15]

    Lionte S, Vasile C, Siroux M 2015 Appl. Therm. Eng. 75 871

    [16]

    Li P, Gong M Q, Yao G H, Wu J F 2006 Int. J. Refrig. 29 1259

    [17]

    Yu B F, Zhang Y, Gao Q, Yang D X 2006 Int. J. Refrig. 29 1348

    [18]

    Tao W Q 2001 Numerical Heat Transfer(Second Edition) (Xian: Xi'an Jiaotong University Press) p15 (in Chinese) [陶文铨 2001 数值传热学(第二版)(西安: 西安交通大学出版社)第15页]

  • [1] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能.  , 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [2] 苏文霞, 陆海鸣, 曾子芮, 张一飞, 刘剑, 徐坤, 王敦辉, 都有为. 磁制冷材料LaFe11.5Si1.5基合金成分与磁相变温度关系的高通量计算.  , 2021, 70(20): 207501. doi: 10.7498/aps.70.20211085
    [3] 刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲. 双层耦合非对称反应扩散系统中的超点阵斑图.  , 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [4] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析.  , 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [5] 王新鑫, 迟露鑫, 伍光凤, 李春天, 樊丁. Ar-O2混合气体电弧的数值模拟.  , 2019, 68(17): 178102. doi: 10.7498/aps.68.20190416
    [6] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究.  , 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [7] 刘乐柱, 张季谦, 许贵霞, 梁立嗣, 汪茂胜. 一种基于混沌系统部分序列参数辨识的混沌保密通信方法.  , 2014, 63(1): 010501. doi: 10.7498/aps.63.010501
    [8] 宁利中, 王娜, 袁喆, 李开继, 王卓运. 分离比对混合流体Rayleigh-Bénard对流解的影响.  , 2014, 63(10): 104401. doi: 10.7498/aps.63.104401
    [9] 白占国, 李新政, 李燕, 赵昆. 气体放电系统中多臂螺旋波的数值分析.  , 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [10] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟.  , 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [11] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [12] 杜宏亮, 何立明, 兰宇丹, 王峰. 约化场强对氮-氧混合气放电等离子体演化特性的影响.  , 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [13] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟.  , 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [14] 兰宇丹, 何立明, 丁伟, 王峰. 不同初始温度下H2/O2混合物等离子体的演化.  , 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [15] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [16] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟.  , 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [17] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟.  , 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟.  , 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [19] 朱鹏飞, 钱列加, 薛绍林, 林尊琪. 基于“神光-Ⅱ”装置的飞秒拍瓦级光学参量啁啾脉冲放大的特性分析与系统设计.  , 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
    [20] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟.  , 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
计量
  • 文章访问数:  6919
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-17
  • 修回日期:  2015-06-23
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map