-
运用激光微织构技术, 通过控制微凹坑形状、间距、深度等参数, 在45#钢表面制备了一组表面算术平均偏差Sa相同但表面微观结构不同的试件. 使用Talysulf CCI Lite 非接触式三维光学轮廓仪对表面进行测量, 采用ISO 25178三维形貌表征参数对其形貌进行表征. 在SL200 KS光学法固液接触角和界面张力仪上针对32#汽轮机油进行润湿性试验, 分析了温度、液滴体积、表面结构特征等因素对润湿性的影响, 并借助ISO25178中部分参数对固体表面形貌随机特征与其润湿性之间的关联性进行了量化研究. 基于固液本征接触角为锐角, 研究结果表明: 固液接触角在润湿过程中先迅速减小, 之后逐渐趋于稳定; 固液平衡接触角随温度的升高而减小, 随液滴体积的增大先增大后减小; 激光微织构能够改变表面润湿性, Sa相同的表面, 微织构形状、方向均影响表面润湿性, 当槽状微织构表面的槽方向与液滴铺展方向一致时, 润湿效果最优. ISO25178系列三维形貌表征参数中幅度参数(Sku, Ssk)、空间参数(Str, Sal)、混合参数(Sdq, Sdr)与表面润湿性之间具有较强的关联性: Sku, Sal, Sdr越大, Ssk, Str, Sdq 越小的表面, 固液平衡接触角越小, 表面润湿性越好.In order to study the effects of working conditions and solid surface topography on the wettability of material, a series of No. 45 steel specimens with the same surface arithmetic average height Sa and different surface microstructures is designed and manufactured by laser surface texturing. All the surfaces are measured by a non-contact three-dimensional (3D) optical profiler Talysulf CCI Lite and characterized by the ISO25178. A series of wetting experiments is carried out with the No. 32 turbine oil on an optical contact angle and surface tension meter SL200 KS. The effects of temperature, droplet volume and surface structure on the wettability are analyzed. Meanwhile, quantitative research of the relationship between the random characteristics of topography and wettability of the solid surface is conducted with parameters obtained from the ISO25178. Based on the fact that the contact angle is an acute angle, the results show that the contact angle of the droplet on the solid surface decreases rapidly to a stable value in the wetting process. The stable value decreases with the increase of the temperature, while it first increases and then decreases with the increase of the droplet volume. The surface wettability can be affected by the laser micro-texturing. Surfaces with similar values of Sa show different wettabilities for different micro-textures with different shapes and directions. Textured surfaces with grooves along the spreading direction of the droplet perform the best wettability in our research. Results also predicate that the wettability of surface is greatly influenced by the amplitude parameters (Sku, Ssk), spatial parameters (Str, Sal), hybrid parameters (Sdq, Sdr), and feature parameters (Sda, Sdv), which are all obtained from the ISO25178. The wettability of hydrophilic surface becomes better with increasing Sku, Sal, and Sdr and reducing Ssk, Str, and Sdq.
-
Keywords:
- wettability /
- laser micro-texturing /
- three dimensional topography parameters /
- working conditions
[1] Cottin-Bizonne C, Barrat J L, Bocquet L, Charlaix E 2003 Nat. Mater. 2 237
[2] Borruto A, Crivellone G, Marani F 1998 Wear 222 57
[3] Wang X, Zhang X J, Meng Y G, Wen S Z 2008 J. Tsinghua Univ. (Sci. Tech.) 48 1302 (in Chinese) [王馨, 张向军, 孟永钢, 温诗铸 2008 清华大学学报 (自然科学版) 48 1302]
[4] Yang S Y, Guo F, Ma C, Wang H F 2010 Tribology 30 203 (in Chinese) [杨淑燕, 郭峰, 马冲, 王海峰 2010 摩擦学学报 30 203]
[5] Lian F, Zhang H C, Chang Y L 2013 Func. Mater. 44 3154 (in Chinese) [连峰, 张会臣, 常允乐 2013 功能材料 44 3154]
[6] Hu H B, Bao L Y, Huang S H 2013 Acta Mech. Sin. 45 507 (in Chinese) [胡海豹, 鲍路瑶, 黄苏和 2013 力学学报 45 507]
[7] Yan C P, Wang L, Wang Q D, Xu H, Hao X Q, Guo F L 2014 Tribology 34 297 (in Chinese) [严诚平, 王莉, 王权岱, 徐华, 郝秀清, 郭方亮 2014 摩擦学学报 34 297]
[8] Wang X P, Chen Z F, Shen Q 2005 Sci. China Ser B 35 64 (in Chinese) [王兴平, 陈志方, 沈荃 2005 中国科学B 辑 35 64]
[9] Lu X, Zhang S B, Li Z Q, Wang Q 2013 J. Dalian Jiaotong Univ. 34 75 (in Chinese) [陆兴, 张姝斌, 李志强, 王琪 2013 大连交通大学学报 34 75]
[10] Qiu F, Wang M, Zhou H G, Zheng X, Lin X, Huang W D 2013 Acta Phys. Sin. 62 120203 (in Chinese) [邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东 2013 62 120203]
[11] McHale G, Shirtcliffe N J, Aqil S, Perry C C, Newton M I 2004 Phys. Rev. Lett. 93 036102
[12] McHale G, Newton M I, Shirtcliffe N J 2009 J. Phys. Condens. Matter 21 464122
[13] Zhang J X, Yao Z H, Hao P F, Fu C S, Nan D, Wei J Q 2014 Appl. Math. Mech. 35 322 (in Chinese) [张静娴, 姚朝晖, 郝鹏飞, 傅承诵, 南豆, 韦进全 2014 应用数学和力学 35 322]
[14] Yang Y C, Guan Z S, Feng W H, Ye Z Y, Si Z X, Song Y L 2002 Acta Chim. Sin. 60 1773 (in Chinese) [杨迎春, 管自生, 冯文辉, 叶自义, 司宗兴, 宋延林, 江雷2002化学学报 60 1773]
[15] Chen Y K, Melvin L S, Rodriguez S, Bell D, Weislogel M M 2009 Microelectronic Eng. 86 1317
[16] Cheng S, Dong Y K, Zhang X J 2007 Mech. Sci. Tech. Aerospace Eng. 26 822 (in Chinese) [程帅, 董云开, 张向军 2007 机械科学与技术 26 822]
[17] Pan G, Huang Q G, Hu H B, Liu Z Y 2010 Polymer Mater. Sci. Eng. 26 163 (in Chinese) [潘光, 黄桥高, 胡海豹, 刘占一 2010 高分子材料科学与工程 26 163]
[18] Liu S S, Zhang C H, He J G, Zhou J, Yin H Y 2013 Acta Phys. Sin. 62 206201 (in Chinese) [刘思思, 张朝辉, 何建国, 周杰, 尹恒洋 2013 62 206201]
[19] Lian F, Zhang H C, Pang L Y, Li J 2011 Nanotech. Preci. Eng. 9 6 (in Chinese) [连峰, 张会臣, 庞连云, 李杰 2011 纳米技术与精密工程 9 6]
[20] Kubiaka K J, Wilsona M C T, Mathiab T G, Carvalc P 2011 Wear 271 523
[21] Nakae H, Inup R, Hirata Y, Saito H 1998 Acta Mater. 46 2313
[22] Chen Y F, Chen Y P, Zhang C B, Shi M H 2011 J. Eng. Therm. Phy. 32 1188 (in Chinese) [陈云富, 陈永平, 张程宾, 施明恒 2011 工程热 32 1188]
[23] Jing W X, Wang B, Niu L L, Qi H, Jiang Z D, Chen L J, Zhou F 2013 Acta Phys. Sin. 62 218102 (in Chinese) [景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆 2013 62 218102]
[24] Geometrical Product Specification(GPS) 2006 ISO/TS CD 25178-2
[25] Tan X W 2007 J. Southwest China Normal Univ. (Sci. Tech.) 32 115 (in Chinese) [谭兴文 2007 西南师范大学学报(自然科学版) 32 115]
[26] Good R J, Koo M N 1979 Colloid Int. Sci. 71 283
[27] Gaydos J, Neumann A W 1987 Colloid Int. Sci. 120 76
[28] Chen S, Tao Y, Shen S Q, Li D W 2014 Acta Mech. Sin. 46 329 (in Chinese) [陈石, 陶英, 沈胜强, 李德伟 2014 力学学报 46 329]
[29] Wang X D, Peng X F, Li D Z 2003 Sci. China Ser E 33 625 (in Chinese) [王晓东, 彭晓峰, 李笃中 2003 中国科学 E辑 33 625]
[30] Wenzel R N 1936 Ind. Eng. Chem. 28 988
[31] Cassie A B D 1948 Discuss. Faraday Soc. 44 11
[32] Morita M, Koga T, Otsuka H, Takahara A 2005 Langmuir 21 911
[33] Robert D, Neumann, Wilhelm A 2012 Coll. Surf. A Physicochemical and Eng. Aspects 399 41
[34] Chen Y, He B, Lee J, Patankar N A 2005 Colloid Interface Sci. 281 458
-
[1] Cottin-Bizonne C, Barrat J L, Bocquet L, Charlaix E 2003 Nat. Mater. 2 237
[2] Borruto A, Crivellone G, Marani F 1998 Wear 222 57
[3] Wang X, Zhang X J, Meng Y G, Wen S Z 2008 J. Tsinghua Univ. (Sci. Tech.) 48 1302 (in Chinese) [王馨, 张向军, 孟永钢, 温诗铸 2008 清华大学学报 (自然科学版) 48 1302]
[4] Yang S Y, Guo F, Ma C, Wang H F 2010 Tribology 30 203 (in Chinese) [杨淑燕, 郭峰, 马冲, 王海峰 2010 摩擦学学报 30 203]
[5] Lian F, Zhang H C, Chang Y L 2013 Func. Mater. 44 3154 (in Chinese) [连峰, 张会臣, 常允乐 2013 功能材料 44 3154]
[6] Hu H B, Bao L Y, Huang S H 2013 Acta Mech. Sin. 45 507 (in Chinese) [胡海豹, 鲍路瑶, 黄苏和 2013 力学学报 45 507]
[7] Yan C P, Wang L, Wang Q D, Xu H, Hao X Q, Guo F L 2014 Tribology 34 297 (in Chinese) [严诚平, 王莉, 王权岱, 徐华, 郝秀清, 郭方亮 2014 摩擦学学报 34 297]
[8] Wang X P, Chen Z F, Shen Q 2005 Sci. China Ser B 35 64 (in Chinese) [王兴平, 陈志方, 沈荃 2005 中国科学B 辑 35 64]
[9] Lu X, Zhang S B, Li Z Q, Wang Q 2013 J. Dalian Jiaotong Univ. 34 75 (in Chinese) [陆兴, 张姝斌, 李志强, 王琪 2013 大连交通大学学报 34 75]
[10] Qiu F, Wang M, Zhou H G, Zheng X, Lin X, Huang W D 2013 Acta Phys. Sin. 62 120203 (in Chinese) [邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东 2013 62 120203]
[11] McHale G, Shirtcliffe N J, Aqil S, Perry C C, Newton M I 2004 Phys. Rev. Lett. 93 036102
[12] McHale G, Newton M I, Shirtcliffe N J 2009 J. Phys. Condens. Matter 21 464122
[13] Zhang J X, Yao Z H, Hao P F, Fu C S, Nan D, Wei J Q 2014 Appl. Math. Mech. 35 322 (in Chinese) [张静娴, 姚朝晖, 郝鹏飞, 傅承诵, 南豆, 韦进全 2014 应用数学和力学 35 322]
[14] Yang Y C, Guan Z S, Feng W H, Ye Z Y, Si Z X, Song Y L 2002 Acta Chim. Sin. 60 1773 (in Chinese) [杨迎春, 管自生, 冯文辉, 叶自义, 司宗兴, 宋延林, 江雷2002化学学报 60 1773]
[15] Chen Y K, Melvin L S, Rodriguez S, Bell D, Weislogel M M 2009 Microelectronic Eng. 86 1317
[16] Cheng S, Dong Y K, Zhang X J 2007 Mech. Sci. Tech. Aerospace Eng. 26 822 (in Chinese) [程帅, 董云开, 张向军 2007 机械科学与技术 26 822]
[17] Pan G, Huang Q G, Hu H B, Liu Z Y 2010 Polymer Mater. Sci. Eng. 26 163 (in Chinese) [潘光, 黄桥高, 胡海豹, 刘占一 2010 高分子材料科学与工程 26 163]
[18] Liu S S, Zhang C H, He J G, Zhou J, Yin H Y 2013 Acta Phys. Sin. 62 206201 (in Chinese) [刘思思, 张朝辉, 何建国, 周杰, 尹恒洋 2013 62 206201]
[19] Lian F, Zhang H C, Pang L Y, Li J 2011 Nanotech. Preci. Eng. 9 6 (in Chinese) [连峰, 张会臣, 庞连云, 李杰 2011 纳米技术与精密工程 9 6]
[20] Kubiaka K J, Wilsona M C T, Mathiab T G, Carvalc P 2011 Wear 271 523
[21] Nakae H, Inup R, Hirata Y, Saito H 1998 Acta Mater. 46 2313
[22] Chen Y F, Chen Y P, Zhang C B, Shi M H 2011 J. Eng. Therm. Phy. 32 1188 (in Chinese) [陈云富, 陈永平, 张程宾, 施明恒 2011 工程热 32 1188]
[23] Jing W X, Wang B, Niu L L, Qi H, Jiang Z D, Chen L J, Zhou F 2013 Acta Phys. Sin. 62 218102 (in Chinese) [景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆 2013 62 218102]
[24] Geometrical Product Specification(GPS) 2006 ISO/TS CD 25178-2
[25] Tan X W 2007 J. Southwest China Normal Univ. (Sci. Tech.) 32 115 (in Chinese) [谭兴文 2007 西南师范大学学报(自然科学版) 32 115]
[26] Good R J, Koo M N 1979 Colloid Int. Sci. 71 283
[27] Gaydos J, Neumann A W 1987 Colloid Int. Sci. 120 76
[28] Chen S, Tao Y, Shen S Q, Li D W 2014 Acta Mech. Sin. 46 329 (in Chinese) [陈石, 陶英, 沈胜强, 李德伟 2014 力学学报 46 329]
[29] Wang X D, Peng X F, Li D Z 2003 Sci. China Ser E 33 625 (in Chinese) [王晓东, 彭晓峰, 李笃中 2003 中国科学 E辑 33 625]
[30] Wenzel R N 1936 Ind. Eng. Chem. 28 988
[31] Cassie A B D 1948 Discuss. Faraday Soc. 44 11
[32] Morita M, Koga T, Otsuka H, Takahara A 2005 Langmuir 21 911
[33] Robert D, Neumann, Wilhelm A 2012 Coll. Surf. A Physicochemical and Eng. Aspects 399 41
[34] Chen Y, He B, Lee J, Patankar N A 2005 Colloid Interface Sci. 281 458
计量
- 文章访问数: 7080
- PDF下载量: 323
- 被引次数: 0