搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离轴径向偏振光束及其传输特性

陈顺意 丁攀峰 蒲继雄

引用本文:
Citation:

离轴径向偏振光束及其传输特性

陈顺意, 丁攀峰, 蒲继雄

Off axial radially polarized beam and its propagation characteristics

Chen Shun-Yi, Ding Pan-Feng, Pu Ji-Xiong
PDF
导出引用
  • 基于Wolf近轴传输理论, 导出离轴径向偏振光束光强的解析表达式, 并研究离轴量对离轴径向偏振光束传输中光强分布的影响, 同时根据一阶矩质心位置的定义推导出离轴径向偏振光束的质心坐标, 研究其质心位置的变化规律. 结果表明, 与径向偏振光束不同, 离轴径向偏振光束在近场处传输时光强分布不均匀, 随着传输距离的增加, 光强分布均匀性逐渐得到改善, 而径向偏振光束在传输中始终保持空心对称光斑. 离轴量较小时, 近场处光强分布呈非对称空心面包圈形, 随着传输距离增达到一定程度, 光强分布演化为对称空心面包圈形, 离轴量越小, 演变距离越短; 离轴量较大时, 随着光束的传输离轴径向偏振光束的空心部分消失, 逐渐由空心面包圈形向高斯型演变, 径向偏振光束特性消失. 另一方面, 离轴径向偏振光束的质心不随传输距离的改变而改变. 质心纵坐标恒为零, 质心横坐标与光斑尺寸及离轴量相关. 随着光斑尺寸增大, 质心横坐标成线性增长. 当离轴量较小时, 质心横坐标随离轴量的增大呈非线性增长, 增长量不明显; 离轴量较大时, 质心横坐标随离轴量的增大呈线性增长, 且变化明显.
    Based on the theory of paraxial approximation of beam propagation, the analytical expression of the intensity of the off axial radially polarized beam (OARPB) is derived and the effect of the off axial magnitude on the distribution of intensity of the OARPB is studied. Meanwhile, according to the definition of the first-order moment of centroid, the coordinate of centroid of the OARPB is derived and the variation of cenreoid of the OARPB is studied. Simulation result shows that the intensity distribution of the OARPB is different from that of the radially polarized beam. The intensity distribution of the OARPB is not uniform in the near-field. With increasing propagation distance, the beam spreads and the uniformity of intensity of the OARPB is improved gradually. However, the intensity distribution of the radially polarized beam keeps the form of symmetric doughnut spot during propagation all the time. When the off axial magnitude is small, the intensity distribution of the OARBP is obviously asymmetric in the near-field, and it becomes nearly symmetric while the beam propagates a certain distance. The smaller the off axial magnitude, the shorter the required propagation distance to become symmetric for the OARPB. When the off axial magnitude is larger, the hollow part of intensity distribution disappears, and the doughnut beam of the OARPB changes into a Gaussian beam spot gradually during propagation. On the other hand, the centroid of the OARPB does not change with increasing propagation distance. The value of the ordinate of centroid is equal to zero all the time. And the value of the abscissa of centroid is related to the beam size and the off axial magnitude. While the beam size increases, the abscissa of centroid increases linearly at the same time. When the off axial magnitude is small, the abscissa of the centroid of the OARPB increases with the increase of the off axial magnitude, nonlinearly and slightly; however, when the off axial magnitude is larger, the abscissa of centroid of the OARPB increases with the increase of the off axial magnitude, linearly and significantly.
    • 基金项目: 国家自然科学基金(批准号: 61307001, 61178015)和福建省自然科学基金(批准号: 2013J05094, 2014J05007)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61307001, 61178015) and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2013J05094, 2014J05007).
    [1]

    Mushiake Y, Matsumura K, Nakajima N 1972 Proc. IEEE 60 1107

    [2]

    Tidwell S C, Kim G H, Kimura W D 1993 Appl. Opt. 32 5222

    [3]

    Niziev V G, Nesterov A V 1999 J. Phys. D: Appl. Phys. 32 1455

    [4]

    Novotny L, Beversluis M R, Youngworth K S, Brow T G 2001 Phys. Rev. Lett. 86 5251

    [5]

    Dom R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901

    [6]

    Bokor N, Davidson N 2007 Opt. Commun. 279 229

    [7]

    Grosjean T, Courjon D 2007 Opt. Commun. 272 314

    [8]

    Deng D M 2006 J. Opt. Soc. Am. B 23 1228

    [9]

    Deng D M, Guo Q, Wu L, Yang X B 2007 J. Opt. Soc. Am. B 24 636

    [10]

    Deng D M, Guo Q 2007 Opt. Lett. 32 2711

    [11]

    Cheng K, Tan Q F, Zhou Z H, Jin G F 2010 Acta Opt. Sin. 11 3295 (in Chinese) [程侃, 谭峭峰, 周哲海, 金国藩 2010 光学学报 11 3295]

    [12]

    Li Z W, Chen M, Li G 2014 Chin. J. Lasers 41 0102006 (in Chinese) [李政委, 陈檬, 李港 2014 中国激光 41 0102006]

    [13]

    Ghadyani Z, Vartiainen I, Harder I, Iff W, Berger A, Lindlein N, Kuittinen M 2011 Appl. Opt. 50 2451

    [14]

    Ahmed M A, Haefner M, Vogel M, Pruss C, Voss A, Osten W, Graf T 2011 Opt. Express 19 5093

    [15]

    Martínez-Herrero R, Prado F 2015 Opt. Express 23 5043

  • [1]

    Mushiake Y, Matsumura K, Nakajima N 1972 Proc. IEEE 60 1107

    [2]

    Tidwell S C, Kim G H, Kimura W D 1993 Appl. Opt. 32 5222

    [3]

    Niziev V G, Nesterov A V 1999 J. Phys. D: Appl. Phys. 32 1455

    [4]

    Novotny L, Beversluis M R, Youngworth K S, Brow T G 2001 Phys. Rev. Lett. 86 5251

    [5]

    Dom R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901

    [6]

    Bokor N, Davidson N 2007 Opt. Commun. 279 229

    [7]

    Grosjean T, Courjon D 2007 Opt. Commun. 272 314

    [8]

    Deng D M 2006 J. Opt. Soc. Am. B 23 1228

    [9]

    Deng D M, Guo Q, Wu L, Yang X B 2007 J. Opt. Soc. Am. B 24 636

    [10]

    Deng D M, Guo Q 2007 Opt. Lett. 32 2711

    [11]

    Cheng K, Tan Q F, Zhou Z H, Jin G F 2010 Acta Opt. Sin. 11 3295 (in Chinese) [程侃, 谭峭峰, 周哲海, 金国藩 2010 光学学报 11 3295]

    [12]

    Li Z W, Chen M, Li G 2014 Chin. J. Lasers 41 0102006 (in Chinese) [李政委, 陈檬, 李港 2014 中国激光 41 0102006]

    [13]

    Ghadyani Z, Vartiainen I, Harder I, Iff W, Berger A, Lindlein N, Kuittinen M 2011 Appl. Opt. 50 2451

    [14]

    Ahmed M A, Haefner M, Vogel M, Pruss C, Voss A, Osten W, Graf T 2011 Opt. Express 19 5093

    [15]

    Martínez-Herrero R, Prado F 2015 Opt. Express 23 5043

  • [1] 徐华锋, 张兴宇, 王仁杰. 部分相干多离轴涡旋矢量光束的传输特性.  , 2024, 73(3): 034201. doi: 10.7498/aps.73.20231484
    [2] 海迪且木⋅阿布都吾甫尔, 谭乐韬, 于涛, 谢文科, 刘静, 邵铮铮. 基于相干合成涡旋光束的离轴入射转速测量.  , 2024, 73(16): 168701. doi: 10.7498/aps.73.20240655
    [3] 王剑, 马超, 王东辉, 孟令知, 王洪业, 苑立波. 离轴螺旋长周期光纤光栅特性研究.  , 2023, 72(13): 130701. doi: 10.7498/aps.72.20230415
    [4] 丁继飞, 刘文兵, 李含辉, 罗奕, 谢陈凯, 黄黎蓉. 大焦深离轴超透镜的设计与制作.  , 2021, 70(19): 197802. doi: 10.7498/aps.70.20202235
    [5] 李杨, 朱竹青, 王晓雷, 贡丽萍, 冯少彤, 聂守平. 离轴椭圆矢量光场传输中的光斑演变.  , 2015, 64(2): 024204. doi: 10.7498/aps.64.024204
    [6] 陈顺意, 丁攀峰, 蒲继雄. 离轴涡旋光束弱走离条件下的倍频效应.  , 2015, 64(24): 244204. doi: 10.7498/aps.64.244204
    [7] 王慧, 丁攀峰, 蒲继雄. 离轴高斯涡旋光束的深聚焦特性.  , 2014, 63(21): 214202. doi: 10.7498/aps.63.214202
    [8] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法.  , 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [9] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究.  , 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [10] 刘昶时, 刘文莉. 由阴、阳极电压及入射光强及频率确定光电流.  , 2013, 62(2): 028401. doi: 10.7498/aps.62.028401
    [11] 马媛, 季小玲. 倾斜离轴高斯-谢尔模型光束在大气湍流中通过猫眼光学镜头反射光的光强特性.  , 2013, 62(9): 094214. doi: 10.7498/aps.62.094214
    [12] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变.  , 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [13] 吴甲奇, 李文佳, 席曦, 孟庆蕾, 季静佳, 顾晓峰, 李果华. 基于ZnPc/C60太阳电池的光生电流研究.  , 2011, 60(7): 078802. doi: 10.7498/aps.60.078802
    [14] 陈依新, 郑婉华, 陈微, 陈良惠, 汤益丹, 沈光地. 表面为二维光子晶体结构的AlGaInP系发光二极管的研究.  , 2010, 59(11): 8083-8087. doi: 10.7498/aps.59.8083
    [15] 季小玲, 李晓庆. 湍流对离轴列阵高斯光束相干与非相干合成的影响.  , 2008, 57(12): 7674-7679. doi: 10.7498/aps.57.7674
    [16] 刘普生, 程 科, 吕百达. 离轴位相奇点的动态传输.  , 2008, 57(3): 1683-1688. doi: 10.7498/aps.57.1683
    [17] 王 莉, 王庆峰, 王喜庆, 吕百达. 两束离轴高斯光束干涉场中的横向光涡旋.  , 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
    [18] 季小玲, 汤明玥. 一维线阵离轴高斯光束通过湍流大气的传输特性.  , 2006, 55(9): 4968-4973. doi: 10.7498/aps.55.4968
    [19] 唐远河, 解光勇, 刘汉臣, 邵建斌, 马 琦, 刘会平, 宁 辉, 杨 彧, 严成海. 基于粒子成像测速技术的水中气泡界面的光学性质研究.  , 2006, 55(5): 2257-2262. doi: 10.7498/aps.55.2257
    [20] 高曾辉, 吕百达. 矢量非傍轴离轴高斯光束的传输.  , 2005, 54(11): 5144-5148. doi: 10.7498/aps.54.5144
计量
  • 文章访问数:  5773
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-19
  • 修回日期:  2015-05-21
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map