搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁波在大面积等离子体片中传播特性的分析

夏俊明 徐跃民 孙越强 霍文青 孙海龙 白伟华 柳聪亮 孟祥广

引用本文:
Citation:

电磁波在大面积等离子体片中传播特性的分析

夏俊明, 徐跃民, 孙越强, 霍文青, 孙海龙, 白伟华, 柳聪亮, 孟祥广

Analysis of propagation properties of electromagnetic waves through large planar plasma sheets

Xia Jun-Ming, Xu Yue-Min, Sun Yue-Qiang, Huo Wen-Qing, Sun Hai-Long, Bai Wei-Hua, Liu Cong-Liang, Meng Xiang-Guang
PDF
导出引用
  • 脉冲磁约束线形空心阴极放电形成的大面积等离子体片可应用于等离子体天线、隐身及模拟超音速飞行器表面的等离子体鞘套. 本文首次利用实测等离子体片电子密度时空分布和横向场传播矩阵法, 研究了电磁波在等离子体片中反射率、透射率、吸收率随频率及脉冲放电时间的变化特征. 结果表明: 极化方向平行磁场的电磁波, 在小于截止频率的低频带内具有较高的反射率和吸收率, 增大电流, 反射率增加, 吸收率下降, 在大于截止频率的高频带内反射率和吸收率较低, 增大电流, 透射率下降, 吸收率升高; 极化方向垂直磁场的电磁波在高混杂谐振频率附近存在吸收率明显增强的吸收带, 谐振吸收峰值与放电电流无关; 脉冲放电期间, 电磁波的反射率、透射率与吸收率由不稳定过渡到稳定的时间约为100 s, 过渡时间随着放电电流的增加而增大, 极化方向垂直磁场、小于截止频率的电磁波在稳定放电阶段谐振吸收较强. 本文的研究成果对利用等离子体片实现对电磁波的稳定高反射作用具有重要意义.
    Large planar plasma sheets, generated by a linear hollow cathode in pulse discharge mode under magnetic confinement, can be used in the field of plasma antenna, plasma stealth, and simulation of a plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Firstly, to investigate the propagation properties of electromagnetic waves at different frequencies and polarization, the transverse field transfer matrix method is introduced. Secondly, the measured electron density temporal and spatial distribution and the transverse field transfer matrix method are utilized to calculate the reflection, transmission and absorption of electromagnetic waves by large planar plasma sheets with different currents. Finally, 1 GHz (less than the critical cut-off frequency) electromagnetic waves and 4 GHz (greater than the critical frequency) electromagnetic waves are chosen to investigate the evolution of propagation properties during the pulsed discharge period. Results show that both the reflection and absorption of the electromagnetic waves are greater for their polarization direction parallel to that of magnetic field, and their frequencies lower than the critical cut-off frequency, and as the discharge currents rise, the reflection increases while the absorption decreases. However both the reflection and absorption of the electromagnetic waves with their polarization direction perpendicular to the magnetic field direction and their frequency greater than the critical cut-off frequency become less, and as the discharge currents rise, both the reflection and absorption will increase. For the electromagnetic waves with their polarization direction perpendicular to the magnetic field direction, there is an upper hybrid resonance absorption band near the upper hybrid resonance frequencies, in which the absorption is significant but the absorption peak value is not affected by the discharge current. The propagation characteristics of the electromagnetic waves with polarization direction perpendicular to the magnetic field direction are the same as that of the electromagnetic waves with the polarization direction parallel to the magnetic field direction, except the upper hybrid resonance absorption. During the pulse discharge period, the propagation characteristic of the electromagnetic waves experiences an unstable phase before reaching steady states. The transition time is about 100 s and increases as the discharge current rises. The upper hybrid resonance absorption is significant during the phase of steady state for waves with frequency lower than the critical cut-off frequency and polarization direction parallel to the magnetic field direction. For the applications of a large planar plasma sheet to reflect electromagnetic waves effectively and steadily, the pulse discharge period should be larger than 100 s, and its discharge current should be large enough to make the critical cut-off frequency greater than the frequency of incident wave, and its polarization direction should be parallel to the magnetic field direction.
      通信作者: 夏俊明, xiajunming10@126.com
    • 基金项目: 国家自然科学基金(批准号: 41405039, 41405040)资助的课题.
      Corresponding author: Xia Jun-Ming, xiajunming10@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41405039, 41405040).
    [1]

    Caillault L, Larigaldie S 2002 J. Phys. D: Appl. Phys. 35 1010

    [2]

    Mathew J, Fernsler R F, Meger R A, Gregor J A, Murphy D P, Pechacek R E, Manheimer W M 1996 Phys. Rev. Lett. 77 1982

    [3]

    Manheimer W M 1991 IEEE Trans. Plasma Sci. 19 1228

    [4]

    Fernsler R F, Manheimer W M, Meger R A, Mathew J, Murphy D P, Pechacek R E, Gregor J A 1998 Phys. Plasmas 5 2137

    [5]

    Manheimer W M, Fernsler R F, Gitlin M S 1998 IEEE Trans. Plasma Sci. 26 1543

    [6]

    Gillman E D, Amatucci W E 2014 Phys. Plasmas 21 060701

    [7]

    Zhuang Z W, Yuan N C, Liu S B, Me J J 2005 Plasma Stealth Technology (Beijing: Science Press) p46 (in Chinese) [庄钊文, 袁乃昌, 刘少斌, 莫锦军 2005 等离子体隐身技术(北京: 科学出版社)第46页]

    [8]

    Larigaldie S, Caillault L 2000 J. Phys. D: Appl. Phys. 33 3190

    [9]

    Cheng Z F, Ding L, Xu Y M, Liang C, Jian F S 2009 Chin. J. Radio Sci. 24 1137 (in Chinese) [程芝峰, 丁亮, 徐跃民, 梁超, 鉴福升 2009 电波科学学报 24 1137]

    [10]

    Cheng Z F, Xu Y M, Liang C, Ding L, Jian F S, Zhu X 2010 Chin. J. Radio Sci. 24 1137 (in Chinese) [程芝峰, 徐跃民, 梁超, 丁亮, 鉴福升, 朱翔 2010 电波科学学报 24 1137]

    [11]

    Ding L, Huo W Q, Yang X J, Xu Y M 2012 Plasma Sci. Technol. 14 9

    [12]

    Huo W Q, Guo S J, Ding L, Xu Y M 2013 Plasma Sci. Technol. 15 979

    [13]

    Negi J G, Singh R N 1968 Pure Appl. Geophys. 70 74

    [14]

    Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822

    [15]

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702(in Chinese) [郑宏兴, 葛德彪 2000 49 1702]

    [16]

    Yin X, Zhang H, Sun S J, Zhao Z W, Hu Y L 2013 Prog. Electromagn. Res. 137 159

    [17]

    Mathew J, Meger R A, Fernsler R F, Gregor J A 1996 Rev. Sci. Instrum. 67 2818

    [18]

    Leonhardt D, Walton S G, Blackwell D D, Amatucci W E, Murphy D P, Fersnelr R F, Meger R A 2001 J. Vac. Sci. Technol. A 19 1367

    [19]

    Blackwell D D, Walton S G, Leonhardt D, Murphy D P, Fernsler R F, Amatucci W E, Meger R A 2001 J. Vac. Sci. Technol. A 19 1330

    [20]

    Zhang L, Zhang H X, Yang X Z, Feng C H, Qiao B, Wang L 2003 Chin. Phys. Lett. 20 1984

    [21]

    Lock E H, Fernsler R F, Walton S G 2008 Plasma Sources Sci. Technol. 17 025009

    [22]

    Wan J, Jia X L, Yang J H, Wang S G 2010 IEEE Trans. Plasma Sci. 38 2006

  • [1]

    Caillault L, Larigaldie S 2002 J. Phys. D: Appl. Phys. 35 1010

    [2]

    Mathew J, Fernsler R F, Meger R A, Gregor J A, Murphy D P, Pechacek R E, Manheimer W M 1996 Phys. Rev. Lett. 77 1982

    [3]

    Manheimer W M 1991 IEEE Trans. Plasma Sci. 19 1228

    [4]

    Fernsler R F, Manheimer W M, Meger R A, Mathew J, Murphy D P, Pechacek R E, Gregor J A 1998 Phys. Plasmas 5 2137

    [5]

    Manheimer W M, Fernsler R F, Gitlin M S 1998 IEEE Trans. Plasma Sci. 26 1543

    [6]

    Gillman E D, Amatucci W E 2014 Phys. Plasmas 21 060701

    [7]

    Zhuang Z W, Yuan N C, Liu S B, Me J J 2005 Plasma Stealth Technology (Beijing: Science Press) p46 (in Chinese) [庄钊文, 袁乃昌, 刘少斌, 莫锦军 2005 等离子体隐身技术(北京: 科学出版社)第46页]

    [8]

    Larigaldie S, Caillault L 2000 J. Phys. D: Appl. Phys. 33 3190

    [9]

    Cheng Z F, Ding L, Xu Y M, Liang C, Jian F S 2009 Chin. J. Radio Sci. 24 1137 (in Chinese) [程芝峰, 丁亮, 徐跃民, 梁超, 鉴福升 2009 电波科学学报 24 1137]

    [10]

    Cheng Z F, Xu Y M, Liang C, Ding L, Jian F S, Zhu X 2010 Chin. J. Radio Sci. 24 1137 (in Chinese) [程芝峰, 徐跃民, 梁超, 丁亮, 鉴福升, 朱翔 2010 电波科学学报 24 1137]

    [11]

    Ding L, Huo W Q, Yang X J, Xu Y M 2012 Plasma Sci. Technol. 14 9

    [12]

    Huo W Q, Guo S J, Ding L, Xu Y M 2013 Plasma Sci. Technol. 15 979

    [13]

    Negi J G, Singh R N 1968 Pure Appl. Geophys. 70 74

    [14]

    Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822

    [15]

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702(in Chinese) [郑宏兴, 葛德彪 2000 49 1702]

    [16]

    Yin X, Zhang H, Sun S J, Zhao Z W, Hu Y L 2013 Prog. Electromagn. Res. 137 159

    [17]

    Mathew J, Meger R A, Fernsler R F, Gregor J A 1996 Rev. Sci. Instrum. 67 2818

    [18]

    Leonhardt D, Walton S G, Blackwell D D, Amatucci W E, Murphy D P, Fersnelr R F, Meger R A 2001 J. Vac. Sci. Technol. A 19 1367

    [19]

    Blackwell D D, Walton S G, Leonhardt D, Murphy D P, Fernsler R F, Amatucci W E, Meger R A 2001 J. Vac. Sci. Technol. A 19 1330

    [20]

    Zhang L, Zhang H X, Yang X Z, Feng C H, Qiao B, Wang L 2003 Chin. Phys. Lett. 20 1984

    [21]

    Lock E H, Fernsler R F, Walton S G 2008 Plasma Sources Sci. Technol. 17 025009

    [22]

    Wan J, Jia X L, Yang J H, Wang S G 2010 IEEE Trans. Plasma Sci. 38 2006

  • [1] 陈龙, 檀聪琦, 崔作君, 段萍, 安宇豪, 陈俊宇, 周丽娜. 电子非广延分布的多离子磁化等离子体鞘层特性.  , 2024, 73(5): 055201. doi: 10.7498/aps.73.20231452
    [2] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度.  , 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [3] 张晓辉, 董克攻, 华剑飞, 朱斌, 谭放, 吴玉迟, 鲁巍, 谷渝秋. 相对论皮秒激光在低密度等离子体中直接加速的电子束的横向分布特征研究.  , 2019, 68(19): 195203. doi: 10.7498/aps.68.20191106
    [4] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度.  , 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [5] 丁亮, 霍文青, 杨新杰, 徐跃民. 大面积等离子体片密度分布分析.  , 2012, 61(11): 115204. doi: 10.7498/aps.61.115204
    [6] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断.  , 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [7] 王雪梅, 刘红. 锯齿型石墨烯纳米带的能带研究.  , 2011, 60(4): 047102. doi: 10.7498/aps.60.047102
    [8] 岳廷, 何灏, 张星, 李广. La0.55Ca0.45MnO3的电子密度分布变温X射线衍射测量.  , 2011, 60(5): 057501. doi: 10.7498/aps.60.057501
    [9] 张宏超, 陆建, 倪晓武. 干涉法诊断由纳秒激光诱导产生的大气等离子体的电子密度.  , 2009, 58(6): 4034-4040. doi: 10.7498/aps.58.4034
    [10] 杨 涓, 许映乔, 朱良明. 局域环境中微波等离子体电子密度诊断实验研究.  , 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [11] 王 琛, 王 伟, 孙今人, 方智恒, 吴 江, 傅思祖, 马伟新, 顾 援, 王世绩, 张国平, 郑无敌, 张覃鑫, 彭惠民, 邵 平, 易 葵, 林尊琪, 王占山, 王洪昌, 周 斌, 陈玲燕. 利用x射线激光干涉诊断等离子体电子密度.  , 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
    [12] 郝作强, 俞 进, 张 杰, 远晓辉, 郑志远, 杨 辉, 王兆华, 令维军, 魏志义. 用声学诊断方法测量激光等离子体通道的长度与电子密度.  , 2005, 54(3): 1290-1294. doi: 10.7498/aps.54.1290
    [13] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布.  , 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [14] 张永辉, 江金生, 常安碧. 空心阴极等离子体电子枪研究.  , 2003, 52(7): 1676-1681. doi: 10.7498/aps.52.1676
    [15] 王琛, 顾援, 傅思祖, 周关林, 吴江, 王伟, 孙玉琴, 董佳钦, 孙今人, 王瑞荣, 倪元龙, 万炳根, 黄关龙, 张国平, 林尊琪, 王世绩. 软X射线激光偏折法测量激光等离子体电子密度分布.  , 2002, 51(4): 847-851. doi: 10.7498/aps.51.847
    [16] 李玉同, 张 杰, 陈黎明, 夏江帆, 腾 浩, 魏志义, 江文勉. 对飞秒激光等离子体相互作用中横向箍缩的观察.  , 2000, 49(7): 1400-1403. doi: 10.7498/aps.49.1400
    [17] 黄文忠, 张覃鑫, 何绍堂, 谷渝秋, 尤永录, 江文勉. 利用类铜离子谱线诊断银等离子体电子密度.  , 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
    [18] 陆培祥, 张正泉, 徐至展, 范品忠, 沈百飞, 陈时胜. 类锂硅离子X射线激光谱线宽度和电子密度的空间分布.  , 1993, 42(2): 273-276. doi: 10.7498/aps.42.273
    [19] 程成, 孙威, 唐传舜. 脉冲激光等离子体中时间分辨的电子温度和电子密度.  , 1988, 37(7): 1150-1156. doi: 10.7498/aps.37.1150
    [20] 康寿万, 蔡诗东. 磁化等离子体中逃逸电子的临界速度.  , 1980, 29(3): 311-319. doi: 10.7498/aps.29.311
计量
  • 文章访问数:  6138
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-05
  • 修回日期:  2015-05-14
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map