搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横场中非束缚类准周期伊辛链的赝临界点

张振俊 李文娟 朱璇 熊烨 童培庆

引用本文:
Citation:

横场中非束缚类准周期伊辛链的赝临界点

张振俊, 李文娟, 朱璇, 熊烨, 童培庆

Quantum pseudocritical point in the unbounded quasiperiodic transverse field Ising chain

Zhang Zhen-Jun, Li Wen-Juan, Zhu Xuan, Xiong Ye, Tong Pei-Qing
PDF
导出引用
  • 本文系统地研究了有限尺寸下非束缚类准周期量子伊辛链在横场中的赝临界点的行为. 首先, 通过计算平均磁矩和协作参量, 发现这两个量的导数随着横场的变化都会出现两个清晰的峰. 这与束缚类伊辛链和无序伊辛链的结果明显不同. 其次, 研究了横场中赝临界点的概率分布情况, 发现概率分布并不是高斯型的. 这也与无序的结果不同. 最后, 分析了赝临界点产生的原因, 发现赝临界点是由非束缚类准周期伊辛链中的集团结构造成的.
    We study the quantum pseudocritical points in the unbounded quasiperiodic transverse field Ising chain of finite-size systematically. Firstly, we study the derivatives of averaged magnetic moment and the averaged concurrence with transverse fields. Both of them show two visible peaks, with are nearly not raised when the length of chain is increased. Moreover, the places where the peaks occur in the transverse field are obviously different from that of the quantum phase transition point in the thermodynamic limit. These results are very different from those of the bounded quasiperiodic transverse field Ising chain and the disordered transverse field Ising chain. Then, we analyze the origin of the two visible peaks. For that we study the derivative of magnetic moment for each spin with transverse field. For all spins, the single magnetic moment only show one peak. However, the places where the peaks occur are not random. The peaks always occur in two regions. Thus, the derivatives of averaged magnetic moment reveal two peaks. Furthermore, we study the probability distribution of the pseudocritical points through finding out the peaks of the single magnetic moment in 1000 samples. The distribution is not Guassian. This result is obviously different from that of the disordered case. Besides, the pseudocritical points nearly do not occur at the quantum phase transition point. Finally, we analyze the origin of the pseudocritical points. For that we study the relationship between the spin places and the corresponding places of pseudocritical points. It is found that the pseudocritical points are caused by the two groups that exist in the nearest neighboring interactions of the unbounded quasiperiodic structure. When a spin is in one group, this group will decide the probable place of the pseudocritical point. Through this study, we find that although the quantum phase transition behaviors of the unbounded quasiperiodic transverse field Ising chain and the disordered transverse field Ising chain belong to the same universal class in the thermodynamic limit, the thermodynamic behaviors of the two Ising chains are very different as in finite sizes. The differences are caused by the special structure in the unbounded quasiperiodic system.
      通信作者: 张振俊, hi_zhangzhenjun@sina.com;pqtong@njnu.edu.cn ; 童培庆, hi_zhangzhenjun@sina.com;pqtong@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11175087, 11305045)、湖南省自然科学基金(批准号: 2015JJ6006)和中央高校基本科研业务费(批准号: 2013B00414)资助的课题.
      Corresponding author: Zhang Zhen-Jun, hi_zhangzhenjun@sina.com;pqtong@njnu.edu.cn ; Tong Pei-Qing, hi_zhangzhenjun@sina.com;pqtong@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos.11175087,11305045), the National Science Foundation of Hunan Province of China(Grant No.2015JJ6006), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2013B00414).
    [1]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [2]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge University Press, England)

    [3]

    Grenier M, Mandel O, Esslinger T, Hnsch and Bloch I 2002 Nature 415 39

    [4]

    Vojta M 2003 Rep. Prog. Phys. 66 2069

    [5]

    Wang W G, Qin P Q, He L W, Wang P 2010 Phys. Rev. E 81 016214

    [6]

    Igli F, Lin Y-C, Rieger H, Monthus C 2007 Phys. Rev. B 76 064421

    [7]

    Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951

    [8]

    Levine D, Steinhardt P 1984 Phys. Rev. Lett. 53 2477

    [9]

    Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768

    [10]

    St A 1987 Commun. Math. Phys. 111 409

    [11]

    Gumbs G, Ali M K 1988 Phys. Rev. Lett. 60 1081

    [12]

    Holzer M 1988 Phys. Rev. B 38 5756

    [13]

    Severin M, Riklund R 1989 Phys. Rev. B 39 10362

    [14]

    Chakrabarti A, Karmakar S N 1991 Phys. Rev. B 44 896

    [15]

    Godrche C, Luck J M 1992 Phys. Rev. B 45 176

    [16]

    Oh G Y, Lee M H 1993 Phys. Rev. B 48 12465

    [17]

    Doria M, Satija I 1988 Phys. Rev. Lett. 60 444

    [18]

    Benza V G 1989 Europhys. Lett. 8 321

    [19]

    Luck J M 1993 J. Stat. Phys. 72 417

    [20]

    Grimm U, Baake M 1994 J. Stat. Phys. 74 1233

    [21]

    Hrmisson J, Grimm U, Baake M 1997 J. Phys. A 30 7315

    [22]

    Hrmisson J, Grimm U 1998 Phys. Rev. B 57 R673

    [23]

    Tong P Q, Zhong M 2002 Phys. Rev. B 65 064421

    [24]

    Tong P Q, Liu X X 2006 Phys. Rev. Lett. 97 017201

    [25]

    Wotters W 1998 Phys. Rev. Lett. 80 2245

    [26]

    Pfeuty P 1979 Phys. Lett. A 72 245

    [27]

    Jordan P, Wigner E 1928 Z. Physik 47 631

    [28]

    Arnesen M, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [29]

    Gringrich R and Adami C 2002 Phys. Rev. Lett. 89 270402

    [30]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [31]

    Vidal G, Latorre J I, Rico E, Kitaev A 2003 Phys. Rev. Lett. 90 227902

    [32]

    Wu L, Sarandy M S, Lidar D A 2004 Phys. Rev. Lett. 93 250404

    [33]

    Gu S, Deng S, Li Y, Lin H 2004 Phys. Rev. Lett. 93 086402

    [34]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [35]

    Gong L Y, Tong P Q 2008 Phys. Rev. B 78 115114

    [36]

    Zhu X, Tong P Q 2008 Chin. Phys. B 17 1623

    [37]

    Zhang S J, Jiang J J, Liu Y J 2008 Acta Phys. Sin. 57 0531(in Chinese) [张松俊, 蒋建军, 刘拥军 2008 57 0531]

    [38]

    Wang P, Zheng Q, Wang W G 2010 Chin. Phys. Lett. 27 080301

    [39]

    Wang L C, Shen J, and Yi X X 2011 Chin. Phys. B 20 050306

    [40]

    Osborne T, Nielsen M 2002 Phys. Rev. A 66 032110

  • [1]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [2]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge University Press, England)

    [3]

    Grenier M, Mandel O, Esslinger T, Hnsch and Bloch I 2002 Nature 415 39

    [4]

    Vojta M 2003 Rep. Prog. Phys. 66 2069

    [5]

    Wang W G, Qin P Q, He L W, Wang P 2010 Phys. Rev. E 81 016214

    [6]

    Igli F, Lin Y-C, Rieger H, Monthus C 2007 Phys. Rev. B 76 064421

    [7]

    Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951

    [8]

    Levine D, Steinhardt P 1984 Phys. Rev. Lett. 53 2477

    [9]

    Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768

    [10]

    St A 1987 Commun. Math. Phys. 111 409

    [11]

    Gumbs G, Ali M K 1988 Phys. Rev. Lett. 60 1081

    [12]

    Holzer M 1988 Phys. Rev. B 38 5756

    [13]

    Severin M, Riklund R 1989 Phys. Rev. B 39 10362

    [14]

    Chakrabarti A, Karmakar S N 1991 Phys. Rev. B 44 896

    [15]

    Godrche C, Luck J M 1992 Phys. Rev. B 45 176

    [16]

    Oh G Y, Lee M H 1993 Phys. Rev. B 48 12465

    [17]

    Doria M, Satija I 1988 Phys. Rev. Lett. 60 444

    [18]

    Benza V G 1989 Europhys. Lett. 8 321

    [19]

    Luck J M 1993 J. Stat. Phys. 72 417

    [20]

    Grimm U, Baake M 1994 J. Stat. Phys. 74 1233

    [21]

    Hrmisson J, Grimm U, Baake M 1997 J. Phys. A 30 7315

    [22]

    Hrmisson J, Grimm U 1998 Phys. Rev. B 57 R673

    [23]

    Tong P Q, Zhong M 2002 Phys. Rev. B 65 064421

    [24]

    Tong P Q, Liu X X 2006 Phys. Rev. Lett. 97 017201

    [25]

    Wotters W 1998 Phys. Rev. Lett. 80 2245

    [26]

    Pfeuty P 1979 Phys. Lett. A 72 245

    [27]

    Jordan P, Wigner E 1928 Z. Physik 47 631

    [28]

    Arnesen M, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [29]

    Gringrich R and Adami C 2002 Phys. Rev. Lett. 89 270402

    [30]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [31]

    Vidal G, Latorre J I, Rico E, Kitaev A 2003 Phys. Rev. Lett. 90 227902

    [32]

    Wu L, Sarandy M S, Lidar D A 2004 Phys. Rev. Lett. 93 250404

    [33]

    Gu S, Deng S, Li Y, Lin H 2004 Phys. Rev. Lett. 93 086402

    [34]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [35]

    Gong L Y, Tong P Q 2008 Phys. Rev. B 78 115114

    [36]

    Zhu X, Tong P Q 2008 Chin. Phys. B 17 1623

    [37]

    Zhang S J, Jiang J J, Liu Y J 2008 Acta Phys. Sin. 57 0531(in Chinese) [张松俊, 蒋建军, 刘拥军 2008 57 0531]

    [38]

    Wang P, Zheng Q, Wang W G 2010 Chin. Phys. Lett. 27 080301

    [39]

    Wang L C, Shen J, and Yi X X 2011 Chin. Phys. B 20 050306

    [40]

    Osborne T, Nielsen M 2002 Phys. Rev. A 66 032110

  • [1] 张海松, 卢茂聪, 李志刚. 基于膨胀效应的超临界CO2类沸腾临界点模型.  , 2024, 73(18): 184402. doi: 10.7498/aps.73.20240293
    [2] 杜啸颖, 俞振华. 分形格点中伊辛模型的临界行为.  , 2023, 72(8): 080503. doi: 10.7498/aps.72.20222432
    [3] 吴建达. 从横场伊辛链到量子E8 可积模型.  , 2022, (): . doi: 10.7498/aps.71.20211836
    [4] 江璐冰, 李宁轩, 吉凯. 周期驱动量子伊辛模型中非热统计的形成与抑制.  , 2020, 69(14): 140501. doi: 10.7498/aps.69.20191657
    [5] 邹俊辉, 张娟. 混合准周期异质结构的带隙补偿与展宽.  , 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [6] 陈阿丽, 梁同利, 汪越胜. 二维8重固-流型准周期声子晶体带隙特性研究.  , 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [7] 王晓娜, 耿兴国, 臧渡洋. 一维周期与准周期排列沟槽结构的流体减阻特性研究.  , 2013, 62(5): 054701. doi: 10.7498/aps.62.054701
    [8] 杨立峰, 王亚非, 周鹰. 一维压电Fibonacci类准周期声子晶体传输特性.  , 2012, 61(10): 107702. doi: 10.7498/aps.61.107702
    [9] 刘越, 张巍, 冯雪, 刘小明. 损耗调制型掺铒光纤环形激光器混沌现象的实验研究.  , 2009, 58(5): 2971-2976. doi: 10.7498/aps.58.2971
    [10] 窦军红, 盛艳, 张道中. 准晶非线性光子晶体中二次谐波波长和温度调谐的研究.  , 2009, 58(7): 4685-4688. doi: 10.7498/aps.58.4685
    [11] 何文平, 封国林, 高新全, 丑纪范. 准周期外力驱动下Lorenz系统的动力学行为.  , 2006, 55(6): 3175-3179. doi: 10.7498/aps.55.3175
    [12] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在.  , 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [13] 高瞻, 王振林, 徐坚宏. 半无限无规场混合伊辛自旋系统的临界行为.  , 1997, 46(10): 2029-2035. doi: 10.7498/aps.46.2029
    [14] 王治国, 许伯威. Ashkin-Teller量子链的玻色化形式及其新的临界点.  , 1997, 46(5): 841-845. doi: 10.7498/aps.46.841
    [15] 王永强, 李振亚. 具有单轴各向异性场的无规横向伊辛模型(S=1)的临界行为.  , 1995, 44(5): 811-817. doi: 10.7498/aps.44.811
    [16] 郑瑞伦, 胡先权. 非简谐振动对液氩的临界点与玻意耳线的影响.  , 1994, 43(8): 1254-1261. doi: 10.7498/aps.43.1254
    [17] 傅秀军, 郭子政, 周培勤, 刘有延. 广义Fibonacci准周期链能谱性质.  , 1992, 41(8): 1330-1337. doi: 10.7498/aps.41.1330
    [18] 王福高, 唐坤发, 胡嘉桢. 三结点hierarchical晶格上具有三体相互作用伊辛模型的临界行为.  , 1989, 38(7): 1196-1198. doi: 10.7498/aps.38.1196
    [19] 唐坤发, 胡嘉桢. 伊辛模型的四分支临界面及其临界行为.  , 1988, 37(3): 515-519. doi: 10.7498/aps.37.515
    [20] 唐坤发, 胡嘉桢. 推广伊辛自旋模型的临界温度曲线.  , 1988, 37(1): 132-135. doi: 10.7498/aps.37.132
计量
  • 文章访问数:  5828
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-26
  • 修回日期:  2015-05-15
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map