搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

设计脆性材料的冲击塑性

姜太龙 喻寅 宦强 李永强 贺红亮

引用本文:
Citation:

设计脆性材料的冲击塑性

姜太龙, 喻寅, 宦强, 李永强, 贺红亮

Shock plasticity design of brittle material

Jiang Tai-Long, Yu Yin, Huan Qiang, Li Yong-Qiang, He Hong-Liang
PDF
导出引用
  • 通过微结构设计提升脆性功能材料的冲击塑性, 将有助于避免或延缓失效的发生. 提出在脆性材料中植入特定的微小孔洞以改善其冲击塑性的设计方法. 采用一种能够定量表现脆性材料力学性质的格点-弹簧模型, 研究了孔洞排布方式对脆性材料冲击响应的影响. 孔洞随机排布的多孔脆性材料具有明显高于致密脆性材料的冲击塑性, 而设计规则的孔洞排布方式将有助于进一步提升脆性材料的冲击塑性. 对150 m/s活塞冲击下气孔率5%的多孔样品的介观变形特征分析表明, 孔洞规则排布的样品中孔洞贯通和体积收缩变形占主导, 而孔洞随机排布的样品中剪切裂纹长距离扩展和滑移与转动变形占主导. 尽管在宏观的Hugoniot应力-应变曲线上, 两种孔洞排布方式的样品都表现出三段式响应特征(线弹性阶段、塌缩变形阶段和滑移与转动变形阶段), 但孔洞规则排布时孔洞塌缩变形阶段对整体冲击塑性的贡献更大. 研究揭示的规则排布孔洞增强脆性材料冲击塑性的原理, 将有助于脆性材料冲击诱导功能失效的预防.
    The mechanical properties of a material are closely related to its internal micro-structure. Enhancing shock plasticity by designing appropriate micro-structure will help to slow down or delay shock failure of brittle material. In this paper, we put forward a method of designing and improving shock plasticity of brittle material by implanting specific micro-voids. A lattice-spring model is adopted, which can represent mechanical properties of brittle materials quantitatively. Simulations reveal how the arrangement modes of micro-voids can affect the shock response of brittle material. By implanting randomly arranged voids, porous brittle material has significantly higher shock plasticity than dense brittle material and the design of the regular arrangement mode of voids will help to enhance the shock plasticity further. The dominant mechanism corresponding to the void collapse in the shocked brittle material is shear slip caused by shear stress concentration, which features the occurrence of shear cracks around the voids. Features of mesoscopic deformation in the sample with 5% porosity indicate that the shock plasticity of porous brittle material comes from the volume shrinkage deformation caused by void collapse and the slippage and rotation deformation caused by extension of shear cracks. The inter-permeation of voids and volume shrinkage deformation play a leading role in the sample with regularly arranged voids. While the shear cracks extends over long distance, slippage and rotation deformation take place dominantly in the sample with randomly arranged voids. The two samples with different arrangement modes of voids both have three stages of response in the Hugoniot stress-strain curves in this paper, i. e., linear elasticity stage, collapse deformation stage, and slippage and rotation deformation stage. The sample with higher porosity has a higher shock plasticity than the sample with lower porosity. When the samples have the same porosity, the collapse deformation stage makes greater contribution to the overall shock plasticity if voids are regularly arranged, while the slippage and rotation deformation stage make greater contribution to the overall shock plasticity if the voids are randomly arranged. The principle of enhancing shock plasticity of brittle material by arranging voids regularly in this paper provides physical knowledge for the designing and preparing new types of brittle materials, thereby helping to prevent the function failure induced by shock in brittle material.
      通信作者: 李永强, yqli@mail.neu.edu.cn;honglianghe@caep.cn ; 贺红亮, yqli@mail.neu.edu.cn;honglianghe@caep.cn
    • 基金项目: 中国工程物理研究院重点实验室专项科研计划(批准号: 2012-专-03)、冲击波物理与爆轰物理重点实验室基金(批准号: 9140C670301120C67248, 9140C670302140C67284)和国家自然科学基金(批准号: 11272164)资助的课题.
      Corresponding author: Li Yong-Qiang, yqli@mail.neu.edu.cn;honglianghe@caep.cn ; He Hong-Liang, yqli@mail.neu.edu.cn;honglianghe@caep.cn
    • Funds: Project supported by the National Key Laboratory of Shock Wave and Detonation Physics of China Academy of Engineering Physics (Grant No. 2012-zhuan-03), the Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant Nos. 9140C670301120C67248, 9140C670302140C67284) and the National Natural Science Foundation of China (Grant No. 11272164).
    [1]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [2]

    Bourne N, Millett J, Rosenberg Z, Murray N 1998 J. Mech. Phys. Solids 46 1887

    [3]

    Grady D E 1998 Mech. Mater. 29 181

    [4]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [5]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [6]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [7]

    Mirkhalaf M, Dastjerdi A K, Barthelat F 2014 Nat. Commun. 5 3166

    [8]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [9]

    Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188

    [10]

    Tan P J, Reid S R, Harrigan J J, Zou Z, Li S 2005 J. Mech. Phys. Solids 53 2206

    [11]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [12]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [13]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [14]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [15]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102(in Chinese) [喻寅, 贺红亮, 王文强, 卢铁城 2014 63 246102]

    [16]

    Schaedler T A, Jacobsen A J, Torrents A, Sorensen A E, Lian J, Greer J R, Valdevit L, Carter W B 2011 Science 334 962

    [17]

    Zheng X Y, Lee H, Weisgraber T H, Shusteff M, de Otte J, Duoss E B, Kuntz J D, Biener M M, Ge Q, Jackson J A, Kucheyev S O, Fang N X, Spadaccini C M 2014 Science 344 1373

    [18]

    Meza L R, Das S, Greer J R 2014 Science 345 1322

    [19]

    Bauer J, Hengsbach S, Tesari I, Schwaiger R, Kraft O 2014 PNAS 111 2453

    [20]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [21]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103(in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 61 048103]

    [22]

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solids (Beijing: Higher Education Press) pp4-5 (in Chinese) [罗恩B 著(龚江宏译) 2010 脆性固体断裂力学(北京: 高等教育出版社)第4–5页]

    [23]

    Erhart P, Bringa E M, Kumar M, Albe K 2005 Phys. Rev. B 72 052104

    [24]

    Dávila L P, Erhart P, Bringa E M, Meyers M A, Lubarda V A, Schneider M S, Becker R, Kumar M 2005 Appl. Phys. Lett. 86 161902

    [25]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [26]

    Makarov P V, Schmauder S, Cherepanov O I, Smolin I Y, Romanova V A, Balokhonov R R, Saraev D Y, Soppa E, Kizler P, Fischer G, Hu S, Ludwig M 2001 Theor. Appl. Fract. Mech. 37 183

    [27]

    Wu Q, Jing F Q 1995 Appl. Phys. Lett. 67 49

    [28]

    Herrmann W 1969 J. Appl. Phys. 40 2490

    [29]

    Caëroll M M, Holt A C 1972 J. Appl. Phys. 43 1626

  • [1]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [2]

    Bourne N, Millett J, Rosenberg Z, Murray N 1998 J. Mech. Phys. Solids 46 1887

    [3]

    Grady D E 1998 Mech. Mater. 29 181

    [4]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [5]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [6]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [7]

    Mirkhalaf M, Dastjerdi A K, Barthelat F 2014 Nat. Commun. 5 3166

    [8]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [9]

    Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188

    [10]

    Tan P J, Reid S R, Harrigan J J, Zou Z, Li S 2005 J. Mech. Phys. Solids 53 2206

    [11]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [12]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [13]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [14]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [15]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102(in Chinese) [喻寅, 贺红亮, 王文强, 卢铁城 2014 63 246102]

    [16]

    Schaedler T A, Jacobsen A J, Torrents A, Sorensen A E, Lian J, Greer J R, Valdevit L, Carter W B 2011 Science 334 962

    [17]

    Zheng X Y, Lee H, Weisgraber T H, Shusteff M, de Otte J, Duoss E B, Kuntz J D, Biener M M, Ge Q, Jackson J A, Kucheyev S O, Fang N X, Spadaccini C M 2014 Science 344 1373

    [18]

    Meza L R, Das S, Greer J R 2014 Science 345 1322

    [19]

    Bauer J, Hengsbach S, Tesari I, Schwaiger R, Kraft O 2014 PNAS 111 2453

    [20]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [21]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103(in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 61 048103]

    [22]

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solids (Beijing: Higher Education Press) pp4-5 (in Chinese) [罗恩B 著(龚江宏译) 2010 脆性固体断裂力学(北京: 高等教育出版社)第4–5页]

    [23]

    Erhart P, Bringa E M, Kumar M, Albe K 2005 Phys. Rev. B 72 052104

    [24]

    Dávila L P, Erhart P, Bringa E M, Meyers M A, Lubarda V A, Schneider M S, Becker R, Kumar M 2005 Appl. Phys. Lett. 86 161902

    [25]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [26]

    Makarov P V, Schmauder S, Cherepanov O I, Smolin I Y, Romanova V A, Balokhonov R R, Saraev D Y, Soppa E, Kizler P, Fischer G, Hu S, Ludwig M 2001 Theor. Appl. Fract. Mech. 37 183

    [27]

    Wu Q, Jing F Q 1995 Appl. Phys. Lett. 67 49

    [28]

    Herrmann W 1969 J. Appl. Phys. 40 2490

    [29]

    Caëroll M M, Holt A C 1972 J. Appl. Phys. 43 1626

  • [1] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [2] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [3] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青. 反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构.  , 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [4] 陈兴, 马刚, 周伟, 赖国伟, 来志强. 无序性对脆性材料冲击破碎的影响.  , 2018, 67(14): 146102. doi: 10.7498/aps.67.20180276
    [5] 喻寅, 贺红亮, 王文强, 卢铁城. 多孔脆性材料对高能量密度脉冲的吸收和抵抗能力.  , 2015, 64(12): 124302. doi: 10.7498/aps.64.124302
    [6] 第伍旻杰, 胡晓棉. 高应变率压缩下纳米孔洞对金属铝塑性变形的影响研究.  , 2015, 64(17): 170201. doi: 10.7498/aps.64.170201
    [7] 喻寅, 贺红亮, 王文强, 卢铁城. 含微孔洞脆性材料的冲击响应特性与介观演化机制.  , 2014, 63(24): 246102. doi: 10.7498/aps.63.246102
    [8] 喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮. 多孔脆性介质冲击波压缩破坏的细观机理和图像.  , 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [9] 邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦. 冲击加载下孔洞贯通的微观机理研究.  , 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [10] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究.  , 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [11] 陈 军, 徐 云, 陈栋泉, 孙锦山. 冲击作用下纳米孔洞动力学行为的多尺度方法模拟研究.  , 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [12] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析.  , 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [13] 安兴涛, 李玉现, 刘建军. 介观物理系统中的噪声.  , 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [14] 陈登平, 贺红亮, 黎明发, 经福谦. 冲击压缩下非均质脆性固体的弛豫破坏研究.  , 2007, 56(1): 423-428. doi: 10.7498/aps.56.423
    [15] 周小方. 介观LC电路零状态响应的完全解.  , 2007, 56(10): 6019-6022. doi: 10.7498/aps.56.6019
    [16] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为.  , 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [17] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究.  , 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [18] 王继锁, 韩保存, 孙长勇. 介观电容耦合电路的量子涨落.  , 1998, 47(7): 1187-1192. doi: 10.7498/aps.47.1187
    [19] 陈斌, 李有泉, 沙健, 张其瑞. 介观电路中电荷的量子效应.  , 1997, 46(1): 129-133. doi: 10.7498/aps.46.129
    [20] 高守恩, 陈斌, 焦正宽. 低温下介观电路的量子涨落.  , 1995, 44(9): 1480-1483. doi: 10.7498/aps.44.1480
计量
  • 文章访问数:  6000
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-09
  • 修回日期:  2015-03-31
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map