搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5d过渡金属氧化物中的奇异量子物性研究

杜永平 刘慧美 万贤纲

引用本文:
Citation:

5d过渡金属氧化物中的奇异量子物性研究

杜永平, 刘慧美, 万贤纲

Novel properties of 5d transition metal oxides

Du Yong-Ping, Liu Hui-Mei, Wan Xian-Gang
PDF
导出引用
  • 相比于3d和4d过渡金属元素, 5d过渡金属元素既具有很强的自旋轨道耦合相互作用, 同时它们的电子关联作用也不可忽略. 因而5d过渡金属氧化物体系具有许多奇异的量子特性. 这篇综述主要介绍我们在5d过渡金属氧化物中的一些理论进展. 首先介绍烧绿石结构铱氧化物(A2Ir2O7, A=Y或稀土元素)中的Weyl拓扑半金属性. 我们确定出A2Ir2O7这一类具有阻挫结构材料的磁基态, 并预言其是Weyl半金属; 其Weyl 点受到拓扑保护而稳定, 而且它的表面态在费米能级形成特别的费米弧. 其次预言尖晶石结构锇氧化物(AOs2O4, A=Ca, Sr)是具有奇异磁电响应的Axion绝缘体; 然后分析了电子关联、自旋轨道耦合对钙钛矿结构的锇氧化物(NaOsO3)的影响, 并成功定出它的基态磁构型, 最终确定其为Slater绝缘体. 最后介绍了LiOsO3中铁电金属性的成因.
    The spin-orbit coupling (SOC) in the 5d transition metal element is expected to be strong due to the large atomic number and ability to modify the electronic structure drastically. On the other hand, the Coulomb interaction in 5d transition is non-negligible. Hence, the interplay of electron correlations and strong spin-orbit interactions make the 5d transition metal oxides (TMOs) specially interesting for possible novel properties. In this paper, we briefly summarize our theoretical studies on the 5d TMO. In section 2, we systematically discuss pyrochlore iridates. We find that magnetic moments at Ir sites form a non-colinear pattern with moment on a tetrahedron pointing to all-in or all-out from the center. We propose that pyrochlore iridates be Weyl Semimetal (WSM), thus providing a condensed-matter realization of Weyl fermion that obeys a two-component Dirac equation. We find that Weyl points are robust against perturbation and further reveal that WSM exhibits remarkable topological properties manifested by surface states in the form of Fermi arcs, which is impossible to realize in purely two-dimensional band structures. In section 3, based on density functional calculation, we predict that spinel osmates (AOs2O4,A=m Ca,Sr) show a large magnetoelectric coupling characteristic of axion electrodynamics. They show ferromagnetic order in a reasonable range of the on-site Coulomb correlation U and exotic electronic properties, in particular, a large magnetoelectric coupling characteristic of axion electrodynamics. Depending on U, other electronic phases including a 3D WSM and Mott insulator are also shown to occur. In section 4, we comprehensively discuss the electronic and magnetic properties of Slater insulator NaOsO3, and successfully predict the magnetic ground state configuration of this compound. Its ground state is of a G-type antiferromagnet, and it is the combined effect of U and magnetic configuration that results in the insulating behavior of NaOsO3 We also discuss the novel properties of LiOsO3, and suggest that the highly anisotropic screening and the local dipole-dipole interactions are the two most important keys to forming LiOsO3-type metallic ferroelectricity in section 5. Using density-functional calculations, we systematically study the origin of the metallic ferroelectricity in LiOsO3. We confirm that the ferroelectric transition in this compound is order-disorder-like. By doing electron screening analysis, we unambiguously demonstrate that the long-range ferroelectric order in LiOsO3 results from the incomplete screening of the dipole-dipole interaction along the nearest-neighboring Li-Li chain direction.
      通信作者: 万贤纲, xgwan@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11374137, 11174124)资助的课题.
      Corresponding author: Wan Xian-Gang, xgwan@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374137, 11174124).
    [1]

    Imada M, Fujimori A, Tokura Y 1988 Rev. Mod. Phys. 70 1039

    [2]

    Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O, Marianetti C A 2006 Rev. Mod. Phys. 78 865

    [3]

    Cohen R E 1992 Nature 358 136

    [4]

    Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R, Chen L H 1994 Science 264 413

    [5]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336

    [6]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [7]

    Pickett W 1989 Rev. Mod. Phys. 61 433

    [8]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402

    [9]

    Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, Arima T 2009 Science 323 1329

    [10]

    Jin H, Jeong H, Ozaki T, Yu J 2009 Phys. Rev. B 80 075112

    [11]

    Watanabe H, Shirakawa T, Yunoki S 2010 Phys. Rev. Lett. 105 216410

    [12]

    Arita R, Kunes J, Kozhevnikov A V, Eguiluz A G, Imada M 2012 Phys. Rev. Lett. 108 086403

    [13]

    Mattheiss L F 1976 Phys. Rev. B 13 2433

    [14]

    Witczak-Krempa W, Chen G, Kim Y B, Balents L 2014 Annu. Rev. Condens. Matter Phys. 5 57

    [15]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101

    [16]

    Balents L 2011 Physica A 4 36

    [17]

    Wan X, Vishwanath A, Savrasov S Y 2012 Phys. Rev. Lett. 108 146601

    [18]

    Du Y, Wan X, Sheng L, Dong J, Savrasov S Y 2012 Phys. Rev. B 85 174424

    [19]

    Liu H M, Du Y, Xie Y L, Liu J M, Duan C G, Wan X 2015 Phys. Rev. B 91 064104

    [20]

    Singh R S, Medicherla V R R, Maiti K, Sampathkumaran E V 2008 Phys. Rev. B 77 201102

    [21]

    Matsuhira K, Wakeshima M, Nakanishi R, Yamada T, Nakamura A, Kawano W, Takagi S, Hinatsu Y 2007 J. Phys. Soc. Jpn. 76 043706

    [22]

    Yanagishima D, Maeno Y 2001 J. Phys. Soc. Jpn. 70 2880

    [23]

    Fukazawa H, Maeno Y 2002 J. Phys. Soc. Jpn. 71 2578

    [24]

    Soda M, Aito N, Kurahashi Y, Kobayashi Y, Sato M 2003 Physica B 329 1071

    [25]

    Taira N, Wakeshima M Hinatsu Y 2001 J. Phys.: Condens. Matter 13 5527

    [26]

    Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T, Duijn J, Balicas L, Millican J N, Macaluso R T, Chan J Y 2006 Phys. Rev. Lett. 96 087204

    [27]

    Subramanian M A, Aravamudan G, Subba Rao G V 1983 Prog. Solid St. Chem. 15 55

    [28]

    Bramwell S T, Gingras M J P 2001 Science 294 1495

    [29]

    Ramirez A P 1994 Ann. Rev. Mater. Sci. 24 453

    [30]

    Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53

    [31]

    Savrasov S Y 1996 Phys. Rev. B 54 16470

    [32]

    Wan X, Zhou J, Dong J 2010 Europhys. Lett. 92 57007

    [33]

    Du Y, Ding H, Sheng L, Savrasov S Y, Wan X, Duan C 2014 J. Phys.: Condens. Matter 26 025503

    [34]

    Siddharthan R, Shastry B S, Ramirez A P, Hayashi A, Cava R J, Rosenkranz S 1999 Phys. Rev. Lett. 83 1854

    [35]

    Harris M J, Bramwell S T, McMorrow D F, Zeiske T, Godfrey K W 1997 Phys. Rev. Lett. 79 2554

    [36]

    Wan X, Yin Q, Savrasov S Y 2006 Phys. Rev. Lett. 97 266403

    [37]

    Elhajal M, Canals B, Sunyer R, Lacroix C 2005 Phys. Rev. B 71 094420

    [38]

    Mandrus D, Thompson J R, Gaal R, Forro L, Bryan J C, Chakoumakos B C, Woods L M, Sales B C, Fishman R S, Keppens V 2001 Phys. Rev. B 63 195104

    [39]

    Disseler S M, Dhital C, Amato A, Giblin S R, Cruz C, Wilson S D, Graf M J 2012 Phys. Rev. B 86 014428

    [40]

    Disseler S M 2014 Phys. Rev. B 89 140413

    [41]

    Tomiyasu K, Matsuhira K, Iwasa K, Watahiki M, Takagi S, Wakeshima M, Hinatsu Y, Yokoyama M, Ohoyama K, Yamada K 2012 J. Phys. Soc. Jpn. 81 034709

    [42]

    Lefrancois E, Simonet V, Ballou R, Lhotel E, Hadj-Azzem A, Kodjikian S, Lejay P, Manuel P, Khalyavin D, Chapon L C 2015 arXiv: 1502.00787

    [43]

    Slater J C 1951 Phys. Rev. 82 538

    [44]

    Shinaoka H, Miyake T, Ishibashi S 2012 Phys. Rev. Lett. 108 247204

    [45]

    Pesin D A, Balents L 2010 Nature Phys. 6 376

    [46]

    Guo H M, Franz M 2009 Phys. Rev. Lett. 103 206805

    [47]

    Yang B J, Kim Y B 2010 Phys. Rev. B 82 085111

    [48]

    Anisimov V I, Aryasetiawan F, Lichtenstein J 1997 J. Phys.: Condens. Matter 9 767

    [49]

    Weyl H 1929 Zeitshrift fur Physik 56 330

    [50]

    Turner A M, Vishwanath A 2013 arXiv:1301.0330

    [51]

    Murakami S 2007 New J. Phys. 9 356

    [52]

    Halasz G B, Balents L 2012 Phys. Rev. B 85 035103

    [53]

    Weng H, Fang H C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029

    [54]

    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405

    [55]

    Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X, Fang Z 2012 Phys. Rev. B 85 195320

    [56]

    Wang Z, Weng H, Wu Q, Dai X, Fang Z 2013 Phys. Rev. B 88 125427

    [57]

    Du Y, Wan B, Wang D, Sheng L, Duan C G, Wan X 2014 arXiv:1411.4394

    [58]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [59]

    Wilczek F 1987 Phys. Rev. Lett. 58 1799

    [60]

    Qi X L, Hughes T, Zhang S C 2008 Phys. Rev. B 78 195424

    [61]

    Li R, Wang J, Qi X L, Zhang S C 2010 Nature Phys. 6 284

    [62]

    Wang J, Li R, Zhang S C, Qi X L 2011 Phys. Rev. Lett. 106 126403

    [63]

    Malashevich A, Souzo I, Coh S, Vanderbilt D 2010 New J. Phys. 12 053032

    [64]

    Essin A M, Turner A M, Moore J E, Vanderbilt D 2010 Phys. Rev. B 81 205104

    [65]

    Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805

    [66]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120

    [67]

    Dzero M, Sun K, Galitski V, Coleman P 2010 Phys. Rev. Lett. 104 106408

    [68]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302

    [69]

    Turner A M, Zhang Y, Mong R S K, Vishwanath A 2010 arXiv:1010.4335

    [70]

    Hughes T L, Prodan E, Bernevig B A 2010 arXiv:1010.4508

    [71]

    Padilla W J, Mandrus D, Basov D N 2002 Phys. Rev. B 66 035120

    [72]

    Shi Y G, Guo Y F, Yu S, Arai M, Belik A A, Sto A, Yamaura K, Takayama-Muromachi E, Tian H F, Yang H X, Li J Q, Varga T, Mitchell J F, Okamoto S 2009 Phys. Rev. B 80 161104

    [73]

    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 2001 WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria: Karlheinz Schwarz, Technische Universitat Wien)

    [74]

    Moriya T 1985 Spin Fluctuations in Itinerant Electron Magnetism (New York: Springer-Verlag)

    [75]

    Calder S, Garlea V O, McMorrow D F, Lumsden M D, Stone M B, Lang J C, Kim J W, Schlueter J A, Shi Y G, Yamaura K, Sun Y S, Tsujimoto Y, Christianson A D 2012 Phys. Rev. Lett. 108 257209

    [76]

    Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K, Boothroyd A T 2013 Nature Mat. 12 1024

    [77]

    Simand H, Kim B G 2014 Phys. Rev. B 89 201107

    [78]

    Xiang H J 2014 Phys. Rev. B 90 094108

    [79]

    Giovannetti G, Capone M 2014 Phys. Rev. B 90 195113

    [80]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [81]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [82]

    Inbar I, Cohen R E 1996 Phys. Rev. B 53 1193

    [83]

    Duan C G, Velev J P, Sabirianov R F, Zhu Z, Chu J, Jaswal S S, Tsymbal E Y 2008 Phys. Rev. Lett. 101 137201

    [84]

    Chikara S, Korneta O, Crummett W P, DeLong L E, Schlottmann P, Cao G 2009 Phys. Rev. B 80 140407(R)

    [85]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [86]

    Shitade A, Katsura H, Kunes J, Qi X L, Zhang S C, Nagaosa N 2009 Phys. Rev. Lett. 102 256403

    [87]

    Maiti K, Singh R S, Medicherla V R R, Rayaprol S, Sampathkumaran E V 2005 Phys. Rev. Lett. 95 016404

    [88]

    Cheng J G Zhou J S, Alonso J A, Goodenough J B, Sui Y, Matsubayashi K, Uwatoko Y 2009 Phys. Rev. B 80 104430

    [89]

    Jackeli G, Khaliulin G 2009 Phys. Rev. Lett. 102 017205

    [90]

    Okamoto T, Nohara M, Aruga-Katori H, Takagi H 2007 Phys. Rev. Lett. 99 137207

    [91]

    Lee P A 2008 Science 321 1306

    [92]

    Balents L 2010 Nature 464 199

  • [1]

    Imada M, Fujimori A, Tokura Y 1988 Rev. Mod. Phys. 70 1039

    [2]

    Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O, Marianetti C A 2006 Rev. Mod. Phys. 78 865

    [3]

    Cohen R E 1992 Nature 358 136

    [4]

    Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R, Chen L H 1994 Science 264 413

    [5]

    Schiffer P, Ramirez A P, Bao W, Cheong S W 1995 Phys. Rev. Lett. 75 3336

    [6]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [7]

    Pickett W 1989 Rev. Mod. Phys. 61 433

    [8]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402

    [9]

    Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, Arima T 2009 Science 323 1329

    [10]

    Jin H, Jeong H, Ozaki T, Yu J 2009 Phys. Rev. B 80 075112

    [11]

    Watanabe H, Shirakawa T, Yunoki S 2010 Phys. Rev. Lett. 105 216410

    [12]

    Arita R, Kunes J, Kozhevnikov A V, Eguiluz A G, Imada M 2012 Phys. Rev. Lett. 108 086403

    [13]

    Mattheiss L F 1976 Phys. Rev. B 13 2433

    [14]

    Witczak-Krempa W, Chen G, Kim Y B, Balents L 2014 Annu. Rev. Condens. Matter Phys. 5 57

    [15]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101

    [16]

    Balents L 2011 Physica A 4 36

    [17]

    Wan X, Vishwanath A, Savrasov S Y 2012 Phys. Rev. Lett. 108 146601

    [18]

    Du Y, Wan X, Sheng L, Dong J, Savrasov S Y 2012 Phys. Rev. B 85 174424

    [19]

    Liu H M, Du Y, Xie Y L, Liu J M, Duan C G, Wan X 2015 Phys. Rev. B 91 064104

    [20]

    Singh R S, Medicherla V R R, Maiti K, Sampathkumaran E V 2008 Phys. Rev. B 77 201102

    [21]

    Matsuhira K, Wakeshima M, Nakanishi R, Yamada T, Nakamura A, Kawano W, Takagi S, Hinatsu Y 2007 J. Phys. Soc. Jpn. 76 043706

    [22]

    Yanagishima D, Maeno Y 2001 J. Phys. Soc. Jpn. 70 2880

    [23]

    Fukazawa H, Maeno Y 2002 J. Phys. Soc. Jpn. 71 2578

    [24]

    Soda M, Aito N, Kurahashi Y, Kobayashi Y, Sato M 2003 Physica B 329 1071

    [25]

    Taira N, Wakeshima M Hinatsu Y 2001 J. Phys.: Condens. Matter 13 5527

    [26]

    Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T, Duijn J, Balicas L, Millican J N, Macaluso R T, Chan J Y 2006 Phys. Rev. Lett. 96 087204

    [27]

    Subramanian M A, Aravamudan G, Subba Rao G V 1983 Prog. Solid St. Chem. 15 55

    [28]

    Bramwell S T, Gingras M J P 2001 Science 294 1495

    [29]

    Ramirez A P 1994 Ann. Rev. Mater. Sci. 24 453

    [30]

    Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53

    [31]

    Savrasov S Y 1996 Phys. Rev. B 54 16470

    [32]

    Wan X, Zhou J, Dong J 2010 Europhys. Lett. 92 57007

    [33]

    Du Y, Ding H, Sheng L, Savrasov S Y, Wan X, Duan C 2014 J. Phys.: Condens. Matter 26 025503

    [34]

    Siddharthan R, Shastry B S, Ramirez A P, Hayashi A, Cava R J, Rosenkranz S 1999 Phys. Rev. Lett. 83 1854

    [35]

    Harris M J, Bramwell S T, McMorrow D F, Zeiske T, Godfrey K W 1997 Phys. Rev. Lett. 79 2554

    [36]

    Wan X, Yin Q, Savrasov S Y 2006 Phys. Rev. Lett. 97 266403

    [37]

    Elhajal M, Canals B, Sunyer R, Lacroix C 2005 Phys. Rev. B 71 094420

    [38]

    Mandrus D, Thompson J R, Gaal R, Forro L, Bryan J C, Chakoumakos B C, Woods L M, Sales B C, Fishman R S, Keppens V 2001 Phys. Rev. B 63 195104

    [39]

    Disseler S M, Dhital C, Amato A, Giblin S R, Cruz C, Wilson S D, Graf M J 2012 Phys. Rev. B 86 014428

    [40]

    Disseler S M 2014 Phys. Rev. B 89 140413

    [41]

    Tomiyasu K, Matsuhira K, Iwasa K, Watahiki M, Takagi S, Wakeshima M, Hinatsu Y, Yokoyama M, Ohoyama K, Yamada K 2012 J. Phys. Soc. Jpn. 81 034709

    [42]

    Lefrancois E, Simonet V, Ballou R, Lhotel E, Hadj-Azzem A, Kodjikian S, Lejay P, Manuel P, Khalyavin D, Chapon L C 2015 arXiv: 1502.00787

    [43]

    Slater J C 1951 Phys. Rev. 82 538

    [44]

    Shinaoka H, Miyake T, Ishibashi S 2012 Phys. Rev. Lett. 108 247204

    [45]

    Pesin D A, Balents L 2010 Nature Phys. 6 376

    [46]

    Guo H M, Franz M 2009 Phys. Rev. Lett. 103 206805

    [47]

    Yang B J, Kim Y B 2010 Phys. Rev. B 82 085111

    [48]

    Anisimov V I, Aryasetiawan F, Lichtenstein J 1997 J. Phys.: Condens. Matter 9 767

    [49]

    Weyl H 1929 Zeitshrift fur Physik 56 330

    [50]

    Turner A M, Vishwanath A 2013 arXiv:1301.0330

    [51]

    Murakami S 2007 New J. Phys. 9 356

    [52]

    Halasz G B, Balents L 2012 Phys. Rev. B 85 035103

    [53]

    Weng H, Fang H C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029

    [54]

    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405

    [55]

    Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X, Fang Z 2012 Phys. Rev. B 85 195320

    [56]

    Wang Z, Weng H, Wu Q, Dai X, Fang Z 2013 Phys. Rev. B 88 125427

    [57]

    Du Y, Wan B, Wang D, Sheng L, Duan C G, Wan X 2014 arXiv:1411.4394

    [58]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [59]

    Wilczek F 1987 Phys. Rev. Lett. 58 1799

    [60]

    Qi X L, Hughes T, Zhang S C 2008 Phys. Rev. B 78 195424

    [61]

    Li R, Wang J, Qi X L, Zhang S C 2010 Nature Phys. 6 284

    [62]

    Wang J, Li R, Zhang S C, Qi X L 2011 Phys. Rev. Lett. 106 126403

    [63]

    Malashevich A, Souzo I, Coh S, Vanderbilt D 2010 New J. Phys. 12 053032

    [64]

    Essin A M, Turner A M, Moore J E, Vanderbilt D 2010 Phys. Rev. B 81 205104

    [65]

    Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805

    [66]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120

    [67]

    Dzero M, Sun K, Galitski V, Coleman P 2010 Phys. Rev. Lett. 104 106408

    [68]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302

    [69]

    Turner A M, Zhang Y, Mong R S K, Vishwanath A 2010 arXiv:1010.4335

    [70]

    Hughes T L, Prodan E, Bernevig B A 2010 arXiv:1010.4508

    [71]

    Padilla W J, Mandrus D, Basov D N 2002 Phys. Rev. B 66 035120

    [72]

    Shi Y G, Guo Y F, Yu S, Arai M, Belik A A, Sto A, Yamaura K, Takayama-Muromachi E, Tian H F, Yang H X, Li J Q, Varga T, Mitchell J F, Okamoto S 2009 Phys. Rev. B 80 161104

    [73]

    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 2001 WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria: Karlheinz Schwarz, Technische Universitat Wien)

    [74]

    Moriya T 1985 Spin Fluctuations in Itinerant Electron Magnetism (New York: Springer-Verlag)

    [75]

    Calder S, Garlea V O, McMorrow D F, Lumsden M D, Stone M B, Lang J C, Kim J W, Schlueter J A, Shi Y G, Yamaura K, Sun Y S, Tsujimoto Y, Christianson A D 2012 Phys. Rev. Lett. 108 257209

    [76]

    Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K, Boothroyd A T 2013 Nature Mat. 12 1024

    [77]

    Simand H, Kim B G 2014 Phys. Rev. B 89 201107

    [78]

    Xiang H J 2014 Phys. Rev. B 90 094108

    [79]

    Giovannetti G, Capone M 2014 Phys. Rev. B 90 195113

    [80]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [81]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [82]

    Inbar I, Cohen R E 1996 Phys. Rev. B 53 1193

    [83]

    Duan C G, Velev J P, Sabirianov R F, Zhu Z, Chu J, Jaswal S S, Tsymbal E Y 2008 Phys. Rev. Lett. 101 137201

    [84]

    Chikara S, Korneta O, Crummett W P, DeLong L E, Schlottmann P, Cao G 2009 Phys. Rev. B 80 140407(R)

    [85]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [86]

    Shitade A, Katsura H, Kunes J, Qi X L, Zhang S C, Nagaosa N 2009 Phys. Rev. Lett. 102 256403

    [87]

    Maiti K, Singh R S, Medicherla V R R, Rayaprol S, Sampathkumaran E V 2005 Phys. Rev. Lett. 95 016404

    [88]

    Cheng J G Zhou J S, Alonso J A, Goodenough J B, Sui Y, Matsubayashi K, Uwatoko Y 2009 Phys. Rev. B 80 104430

    [89]

    Jackeli G, Khaliulin G 2009 Phys. Rev. Lett. 102 017205

    [90]

    Okamoto T, Nohara M, Aruga-Katori H, Takagi H 2007 Phys. Rev. Lett. 99 137207

    [91]

    Lee P A 2008 Science 321 1306

    [92]

    Balents L 2010 Nature 464 199

  • [1] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究.  , 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [2] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器.  , 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [3] 房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶. 间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变.  , 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [4] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变.  , 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [5] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究.  , 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [6] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理.  , 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [7] 罗明海, 徐马记, 黄其伟, 李派, 何云斌. VO2金属-绝缘体相变机理的研究进展.  , 2016, 65(4): 047201. doi: 10.7498/aps.65.047201
    [8] 吴传禄, 马颖, 蒋丽梅, 周益春, 李建成. 电离辐射环境下金属-铁电-绝缘体-基底结构铁电场效应晶体管电学性能的模拟.  , 2014, 63(21): 216102. doi: 10.7498/aps.63.216102
    [9] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究.  , 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [10] 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究.  , 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [11] 张大成, 申艳艳, 黄元杰, 王卓, 刘昌龙. 绝缘体中金属离子注入合成纳米颗粒的理论研究.  , 2010, 59(11): 7974-7978. doi: 10.7498/aps.59.7974
    [12] 邱梅清, 方明虎. Eu2-xPbxRu2O7中的金属-绝缘体相变和自旋玻璃态行为.  , 2006, 55(9): 4912-4917. doi: 10.7498/aps.55.4912
    [13] 马建华, 孙璟兰, 孟祥建, 林 铁, 石富文, 褚君浩. SrTiO3金属-绝缘体-半导体结构的介电与界面特性.  , 2005, 54(3): 1390-1395. doi: 10.7498/aps.54.1390
    [14] 王茂祥, 俞建华, 孙承休, 吴宗汉. 金属-绝缘体-半导体(Au-SiO2-Si)隧道结的负阻现象与发光特性.  , 2000, 49(6): 1159-1162. doi: 10.7498/aps.49.1159
    [15] 俞建华, 孙承休, 王茂祥, 张佑文, 魏同立. 金属-绝缘体-金属隧道发光结的电子隧穿和负阻现象.  , 1998, 47(2): 300-306. doi: 10.7498/aps.47.300
    [16] 刘坤, 褚君浩, 陈诗伟, 赵军, 汤定元. 金属-绝缘体-半导体器件红外探测机理研究.  , 1995, 44(7): 1137-1140. doi: 10.7498/aps.44.1137
    [17] 韦亚一, 郑国珍, 郭少令, 汤定元. 低补偿度n-Hg1-xCdxTe的磁致金属-绝缘体相变和相变后的温度激活输运行为.  , 1994, 43(12): 2031-2037. doi: 10.7498/aps.43.2031
    [18] 陈锋, 应和平, 徐铁锋, 李文铸. 二维半充满Hubbard模型有限温度下绝缘体──金属相变的研究.  , 1994, 43(10): 1672-1676. doi: 10.7498/aps.43.1672
    [19] 赵勇, 诸葛向彬, 何业冶. Y1-xCaxBa2Cu3O6系统中空穴掺杂诱导的绝缘体-金属转变和超导电性.  , 1992, 41(7): 1151-1156. doi: 10.7498/aps.41.1151
    [20] 杨永宏, 邢定钰, 龚昌德. YBa2Cu3O7-x的金属-绝缘体转变.  , 1992, 41(1): 136-143. doi: 10.7498/aps.41.136
计量
  • 文章访问数:  8328
  • PDF下载量:  761
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-30
  • 修回日期:  2015-08-18
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map