-
通过COMSOL Multiphysics 和 Lumerical FDTD solution对不同尺寸纳米银六角阵列在非晶态掺氧氮化硅(a-SiNx:O)介质中的局域表面等离激元共振(LSPR)特性进行仿真, 计算结果表明半径为25 nm的纳米银六角阵列形成的局域表面等离激元(LSP)与厚度为70 nm的a-SiNx:O的蓝光发射(460 nm)的共振效果最为显著, 随着纳米银颗粒尺寸的增大其消光共振峰红移. 在460 nm波长激发下半径为25 nm的纳米银阵列在a-SiNx:O中的极化强度和表面极化电荷的分布模拟证明了该阵列在460 nm激发下形成的LSP为偶极子极化模式, 通过对该尺寸的纳米银阵列的LSP 在a-SiNx:O中的最强垂直辐射空间计算, 获得了银颗粒上方a-SiNx:O的最佳厚度为30 nm, 仿真结果对硅基蓝光发射器件(450460 nm)的设计提供了重要的理论参考.Simulation on the properties of localized surface plasmon resonance (LSPR) of different sized hexagonal Ag nanoarrays embedded in the amorphous oxidized silicon nitride(a-SiNx:O) matrix has been carried out by using COMSOL Multiphysics and FDTD Solution simulation software. Through the calculation of the scattering and absorption cross section of Ag array with different radius, we find that the position of extinction peaks red-shift from 460 to 630 nm when the radius of nanoparticles of hexagonal Ag arrays increases from 25 to 100 nm with the distance between particles 100 nm. The enhanced scattering cross section of the localized surface plasmon (LSP) and blue-shift of the extinction peak can be obtained by tunning the distance between Ag nanoparticles from 100 to 50 nm with the radius of Ag nanoparticles fixed at 50 and 75 nm, respectively. However the mismatch between the extinction peak of hexagonal Ag nanoarrays and the blue light emission of 460 nm from a-SiNx:O films still exists. The novel overlap between the scattering cross section of LSP from hexagonal Ag arrays with a radius of 25 nm and the blue light emission of a-SiNx:O films at 460 nm further confirms that the hexagnoal Ag arrays with a radius of 25 nm is the optimal option to enhance the blue light emission from a-SiNx:O films. Therefore, strong coupling between LSP and blue light emission at 460 nm from a-SiNx:O films with a thickness of 70 nm can be realized when the radius of Ag nanoparticle is 25 nm. We also investigate the enhancement of near field radiative intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm. When the excitation wavelength is 460 nm, the maximum enhancement of near field intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm reaches 1.46104 V/m. The calculated polarization intensity and charge distribution of hexagonal Ag nanoparticle with a radius of 25 nm embedded in a-SiNx:O films reveal that the enhancement of electromagnetic field-intensity is through the dipolar plasmon coupling with the excitons in a-SiNx:O films in bright field mode under the excitation of 460 nm. Further calculation of perpendicular radiative intensity for LSP from the hexagonal Ag array with a radius of 25 nm embedded in a-SiNx:O films indicates that the maximum radiative intensity can be realized in a-SiNx:O matrix with an optimum thickness of 30 nm for a-SiNx:O films. Our theoretical calculations and analysis can provide valuable reference for the design of Si-base blue LED with light emission around 460 nm.
-
Keywords:
- localized surface plasmon /
- hexagonal Ag nanoarrays /
- polarization mode /
- optimum radiative space
[1] Ma Z Y, Chen K J, Huang X F, Xu J, Zhu D, Mei J X, Qiao F, Feng D 2004 Appl. Phys. Lett. 85 516
[2] Hu M Z, Zhou S Y, Han Q, Sun H, Zhou L P, Zeng C M, Wu Z F, Wu X M 2014 Acta Phys. Sin. 63 029501 (in Chinese) [胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅 2014 63 029501]
[3] Dong H P, Chen K J, Zhang P Z, Li W, Xu J, Ma Z Y, Sun Z F, Liu Z Y 2014 Canadian Journal of Physics 92 602
[4] Ma Z Y, Yan M Y, Jiang X F, Yang H F, Xia G Y, Ni X D, Lin T, Li W, Xu L, Chen K J, Huang X F, Feng D 2012 Appl. Phys. Lett. 101 013106
[5] Kim B H, Cho C H, Mun J S, Kwon M K, Park T Y, Kim J S, Byeon C, Lee J, Park S 2008 Advanced Materials 20 3100
[6] Pillai S, Catchpole K R, Trupke T, Zhang G, Zhao J, Green M A 2006 Appl. Phys. Lett. 88 161102
[7] Henson J, DiMariia J, Paiella R 2009 Journal of Appl. Phys. 106 093111
[8] Henson J, Dimakis E, Dimaria J, Li R, Minissale S, Negro L D, Moustakas T D, Paiella R 2010 Optics Express 18 21322
[9] Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802 (in Chinese) [魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 63 217802]
[10] Lu C H, Wu S E, Lai Y L, Li Y L, Liu C P 2014 Journal of Alloys and Compounds 585 460
[11] Das R, Phadke P, Khichar N, Chawla S 2014 Journal of Material and Chemistry C 2 8880
[12] Fadil A, Lida D, Chen Y T, Ma J, Ou Y Y, Ou H Y, Petersen P M, Ou H Y 2014 Scientific Report 4 6392
[13] Kuo Y, Lin C H, Chen H S, Hsieh C, Tu C G, Shih P Y, Chen C H, Liao C H, Su C Y, Yao Y F, Chen H T, Kiang Y W, Yang C C 2015 Japanese Journal of Applied Physics 54 02BD01
[14] Zang Y S, He X, Li J, Yin J, Li K Y, Yue C, Wu Z M, Wu S T, Kang J Y 2013 Nanoscale 5 574
[15] Potrick K, Huisken F 2014 Physical Review B 91 125306
[16] Sahu G, Sahu V, Kukreja L M 2014 Journal of Applied Physics 115 083103
[17] Ma Z Y, Ni X D, Zhang W P, Jiang X F, Yang H F, Yu J, Wang W, Xu J, Xu L, Chen K J, Feng D 2014 Optical Express 22 28180
[18] Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 Journal of Physical Chemistry B 107 668
[19] Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]
[20] Evanoff D E, Chumanov G 2004 Journal of Physical Chemistry B 108 13957
[21] Biteen J S, Sweatlock L A, Mertens H, Lewis N S, Polman A, Atwater H A 2007 Journal of Physical Chemistry C 111 13372
[22] Cong C, Wu D J, Liu X J 2012 Acta Phys. Sin. 61 047802 (in Chinese) [丛超, 吴大建, 刘晓峻 2012 61 047802]
[23] Jensen T R, Kelly L, Lazarides A, Schatz G 1999 Journal of Cluster Science 10 295
[24] Chen F Y, Negash A, Johnston R L 2011 Advances 1 032134
-
[1] Ma Z Y, Chen K J, Huang X F, Xu J, Zhu D, Mei J X, Qiao F, Feng D 2004 Appl. Phys. Lett. 85 516
[2] Hu M Z, Zhou S Y, Han Q, Sun H, Zhou L P, Zeng C M, Wu Z F, Wu X M 2014 Acta Phys. Sin. 63 029501 (in Chinese) [胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅 2014 63 029501]
[3] Dong H P, Chen K J, Zhang P Z, Li W, Xu J, Ma Z Y, Sun Z F, Liu Z Y 2014 Canadian Journal of Physics 92 602
[4] Ma Z Y, Yan M Y, Jiang X F, Yang H F, Xia G Y, Ni X D, Lin T, Li W, Xu L, Chen K J, Huang X F, Feng D 2012 Appl. Phys. Lett. 101 013106
[5] Kim B H, Cho C H, Mun J S, Kwon M K, Park T Y, Kim J S, Byeon C, Lee J, Park S 2008 Advanced Materials 20 3100
[6] Pillai S, Catchpole K R, Trupke T, Zhang G, Zhao J, Green M A 2006 Appl. Phys. Lett. 88 161102
[7] Henson J, DiMariia J, Paiella R 2009 Journal of Appl. Phys. 106 093111
[8] Henson J, Dimakis E, Dimaria J, Li R, Minissale S, Negro L D, Moustakas T D, Paiella R 2010 Optics Express 18 21322
[9] Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802 (in Chinese) [魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 63 217802]
[10] Lu C H, Wu S E, Lai Y L, Li Y L, Liu C P 2014 Journal of Alloys and Compounds 585 460
[11] Das R, Phadke P, Khichar N, Chawla S 2014 Journal of Material and Chemistry C 2 8880
[12] Fadil A, Lida D, Chen Y T, Ma J, Ou Y Y, Ou H Y, Petersen P M, Ou H Y 2014 Scientific Report 4 6392
[13] Kuo Y, Lin C H, Chen H S, Hsieh C, Tu C G, Shih P Y, Chen C H, Liao C H, Su C Y, Yao Y F, Chen H T, Kiang Y W, Yang C C 2015 Japanese Journal of Applied Physics 54 02BD01
[14] Zang Y S, He X, Li J, Yin J, Li K Y, Yue C, Wu Z M, Wu S T, Kang J Y 2013 Nanoscale 5 574
[15] Potrick K, Huisken F 2014 Physical Review B 91 125306
[16] Sahu G, Sahu V, Kukreja L M 2014 Journal of Applied Physics 115 083103
[17] Ma Z Y, Ni X D, Zhang W P, Jiang X F, Yang H F, Yu J, Wang W, Xu J, Xu L, Chen K J, Feng D 2014 Optical Express 22 28180
[18] Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 Journal of Physical Chemistry B 107 668
[19] Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]
[20] Evanoff D E, Chumanov G 2004 Journal of Physical Chemistry B 108 13957
[21] Biteen J S, Sweatlock L A, Mertens H, Lewis N S, Polman A, Atwater H A 2007 Journal of Physical Chemistry C 111 13372
[22] Cong C, Wu D J, Liu X J 2012 Acta Phys. Sin. 61 047802 (in Chinese) [丛超, 吴大建, 刘晓峻 2012 61 047802]
[23] Jensen T R, Kelly L, Lazarides A, Schatz G 1999 Journal of Cluster Science 10 295
[24] Chen F Y, Negash A, Johnston R L 2011 Advances 1 032134
计量
- 文章访问数: 6872
- PDF下载量: 298
- 被引次数: 0