搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真

张文平 马忠元 徐骏 徐岭 李伟 陈坤基 黄信凡 冯端

引用本文:
Citation:

纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真

张文平, 马忠元, 徐骏, 徐岭, 李伟, 陈坤基, 黄信凡, 冯端

Simulation of localized surface plasmon resonance of hexagonal Ag nanoarrays and amorphous oxidized silicon nitride

Zhang Wen-Ping, Ma Zhong-Yuan, Xu Jun, Xu Ling, Li Wei, Chen Kun-Ji, Huang Xin-Fan, Feng Duan
PDF
导出引用
  • 通过COMSOL Multiphysics 和 Lumerical FDTD solution对不同尺寸纳米银六角阵列在非晶态掺氧氮化硅(a-SiNx:O)介质中的局域表面等离激元共振(LSPR)特性进行仿真, 计算结果表明半径为25 nm的纳米银六角阵列形成的局域表面等离激元(LSP)与厚度为70 nm的a-SiNx:O的蓝光发射(460 nm)的共振效果最为显著, 随着纳米银颗粒尺寸的增大其消光共振峰红移. 在460 nm波长激发下半径为25 nm的纳米银阵列在a-SiNx:O中的极化强度和表面极化电荷的分布模拟证明了该阵列在460 nm激发下形成的LSP为偶极子极化模式, 通过对该尺寸的纳米银阵列的LSP 在a-SiNx:O中的最强垂直辐射空间计算, 获得了银颗粒上方a-SiNx:O的最佳厚度为30 nm, 仿真结果对硅基蓝光发射器件(450460 nm)的设计提供了重要的理论参考.
    Simulation on the properties of localized surface plasmon resonance (LSPR) of different sized hexagonal Ag nanoarrays embedded in the amorphous oxidized silicon nitride(a-SiNx:O) matrix has been carried out by using COMSOL Multiphysics and FDTD Solution simulation software. Through the calculation of the scattering and absorption cross section of Ag array with different radius, we find that the position of extinction peaks red-shift from 460 to 630 nm when the radius of nanoparticles of hexagonal Ag arrays increases from 25 to 100 nm with the distance between particles 100 nm. The enhanced scattering cross section of the localized surface plasmon (LSP) and blue-shift of the extinction peak can be obtained by tunning the distance between Ag nanoparticles from 100 to 50 nm with the radius of Ag nanoparticles fixed at 50 and 75 nm, respectively. However the mismatch between the extinction peak of hexagonal Ag nanoarrays and the blue light emission of 460 nm from a-SiNx:O films still exists. The novel overlap between the scattering cross section of LSP from hexagonal Ag arrays with a radius of 25 nm and the blue light emission of a-SiNx:O films at 460 nm further confirms that the hexagnoal Ag arrays with a radius of 25 nm is the optimal option to enhance the blue light emission from a-SiNx:O films. Therefore, strong coupling between LSP and blue light emission at 460 nm from a-SiNx:O films with a thickness of 70 nm can be realized when the radius of Ag nanoparticle is 25 nm. We also investigate the enhancement of near field radiative intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm. When the excitation wavelength is 460 nm, the maximum enhancement of near field intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm reaches 1.46104 V/m. The calculated polarization intensity and charge distribution of hexagonal Ag nanoparticle with a radius of 25 nm embedded in a-SiNx:O films reveal that the enhancement of electromagnetic field-intensity is through the dipolar plasmon coupling with the excitons in a-SiNx:O films in bright field mode under the excitation of 460 nm. Further calculation of perpendicular radiative intensity for LSP from the hexagonal Ag array with a radius of 25 nm embedded in a-SiNx:O films indicates that the maximum radiative intensity can be realized in a-SiNx:O matrix with an optimum thickness of 30 nm for a-SiNx:O films. Our theoretical calculations and analysis can provide valuable reference for the design of Si-base blue LED with light emission around 460 nm.
      通信作者: 马忠元, zyma@nju.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB934402, 2013CB632101), 国家自然科学基金(批准号: 61071008,61376004, 11374143), 中央高校基本科研业务费专项资金(批准号: 1095021030, 1116021004, 1114021005), 国家教育部博士点基金(批准号: 20130091110024), 江苏高校优势学科建设工程资助的课题.
      Corresponding author: Ma Zhong-Yuan, zyma@nju.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2010CB934402, 2013CB632101), the National Nature Science Foundation of China (Grant Nos. 61071008, 61376004, 11374143), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130091110024), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 1095021030, 1116021004, 1114021005), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
    [1]

    Ma Z Y, Chen K J, Huang X F, Xu J, Zhu D, Mei J X, Qiao F, Feng D 2004 Appl. Phys. Lett. 85 516

    [2]

    Hu M Z, Zhou S Y, Han Q, Sun H, Zhou L P, Zeng C M, Wu Z F, Wu X M 2014 Acta Phys. Sin. 63 029501 (in Chinese) [胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅 2014 63 029501]

    [3]

    Dong H P, Chen K J, Zhang P Z, Li W, Xu J, Ma Z Y, Sun Z F, Liu Z Y 2014 Canadian Journal of Physics 92 602

    [4]

    Ma Z Y, Yan M Y, Jiang X F, Yang H F, Xia G Y, Ni X D, Lin T, Li W, Xu L, Chen K J, Huang X F, Feng D 2012 Appl. Phys. Lett. 101 013106

    [5]

    Kim B H, Cho C H, Mun J S, Kwon M K, Park T Y, Kim J S, Byeon C, Lee J, Park S 2008 Advanced Materials 20 3100

    [6]

    Pillai S, Catchpole K R, Trupke T, Zhang G, Zhao J, Green M A 2006 Appl. Phys. Lett. 88 161102

    [7]

    Henson J, DiMariia J, Paiella R 2009 Journal of Appl. Phys. 106 093111

    [8]

    Henson J, Dimakis E, Dimaria J, Li R, Minissale S, Negro L D, Moustakas T D, Paiella R 2010 Optics Express 18 21322

    [9]

    Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802 (in Chinese) [魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 63 217802]

    [10]

    Lu C H, Wu S E, Lai Y L, Li Y L, Liu C P 2014 Journal of Alloys and Compounds 585 460

    [11]

    Das R, Phadke P, Khichar N, Chawla S 2014 Journal of Material and Chemistry C 2 8880

    [12]

    Fadil A, Lida D, Chen Y T, Ma J, Ou Y Y, Ou H Y, Petersen P M, Ou H Y 2014 Scientific Report 4 6392

    [13]

    Kuo Y, Lin C H, Chen H S, Hsieh C, Tu C G, Shih P Y, Chen C H, Liao C H, Su C Y, Yao Y F, Chen H T, Kiang Y W, Yang C C 2015 Japanese Journal of Applied Physics 54 02BD01

    [14]

    Zang Y S, He X, Li J, Yin J, Li K Y, Yue C, Wu Z M, Wu S T, Kang J Y 2013 Nanoscale 5 574

    [15]

    Potrick K, Huisken F 2014 Physical Review B 91 125306

    [16]

    Sahu G, Sahu V, Kukreja L M 2014 Journal of Applied Physics 115 083103

    [17]

    Ma Z Y, Ni X D, Zhang W P, Jiang X F, Yang H F, Yu J, Wang W, Xu J, Xu L, Chen K J, Feng D 2014 Optical Express 22 28180

    [18]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 Journal of Physical Chemistry B 107 668

    [19]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [20]

    Evanoff D E, Chumanov G 2004 Journal of Physical Chemistry B 108 13957

    [21]

    Biteen J S, Sweatlock L A, Mertens H, Lewis N S, Polman A, Atwater H A 2007 Journal of Physical Chemistry C 111 13372

    [22]

    Cong C, Wu D J, Liu X J 2012 Acta Phys. Sin. 61 047802 (in Chinese) [丛超, 吴大建, 刘晓峻 2012 61 047802]

    [23]

    Jensen T R, Kelly L, Lazarides A, Schatz G 1999 Journal of Cluster Science 10 295

    [24]

    Chen F Y, Negash A, Johnston R L 2011 Advances 1 032134

  • [1]

    Ma Z Y, Chen K J, Huang X F, Xu J, Zhu D, Mei J X, Qiao F, Feng D 2004 Appl. Phys. Lett. 85 516

    [2]

    Hu M Z, Zhou S Y, Han Q, Sun H, Zhou L P, Zeng C M, Wu Z F, Wu X M 2014 Acta Phys. Sin. 63 029501 (in Chinese) [胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅 2014 63 029501]

    [3]

    Dong H P, Chen K J, Zhang P Z, Li W, Xu J, Ma Z Y, Sun Z F, Liu Z Y 2014 Canadian Journal of Physics 92 602

    [4]

    Ma Z Y, Yan M Y, Jiang X F, Yang H F, Xia G Y, Ni X D, Lin T, Li W, Xu L, Chen K J, Huang X F, Feng D 2012 Appl. Phys. Lett. 101 013106

    [5]

    Kim B H, Cho C H, Mun J S, Kwon M K, Park T Y, Kim J S, Byeon C, Lee J, Park S 2008 Advanced Materials 20 3100

    [6]

    Pillai S, Catchpole K R, Trupke T, Zhang G, Zhao J, Green M A 2006 Appl. Phys. Lett. 88 161102

    [7]

    Henson J, DiMariia J, Paiella R 2009 Journal of Appl. Phys. 106 093111

    [8]

    Henson J, Dimakis E, Dimaria J, Li R, Minissale S, Negro L D, Moustakas T D, Paiella R 2010 Optics Express 18 21322

    [9]

    Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802 (in Chinese) [魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 63 217802]

    [10]

    Lu C H, Wu S E, Lai Y L, Li Y L, Liu C P 2014 Journal of Alloys and Compounds 585 460

    [11]

    Das R, Phadke P, Khichar N, Chawla S 2014 Journal of Material and Chemistry C 2 8880

    [12]

    Fadil A, Lida D, Chen Y T, Ma J, Ou Y Y, Ou H Y, Petersen P M, Ou H Y 2014 Scientific Report 4 6392

    [13]

    Kuo Y, Lin C H, Chen H S, Hsieh C, Tu C G, Shih P Y, Chen C H, Liao C H, Su C Y, Yao Y F, Chen H T, Kiang Y W, Yang C C 2015 Japanese Journal of Applied Physics 54 02BD01

    [14]

    Zang Y S, He X, Li J, Yin J, Li K Y, Yue C, Wu Z M, Wu S T, Kang J Y 2013 Nanoscale 5 574

    [15]

    Potrick K, Huisken F 2014 Physical Review B 91 125306

    [16]

    Sahu G, Sahu V, Kukreja L M 2014 Journal of Applied Physics 115 083103

    [17]

    Ma Z Y, Ni X D, Zhang W P, Jiang X F, Yang H F, Yu J, Wang W, Xu J, Xu L, Chen K J, Feng D 2014 Optical Express 22 28180

    [18]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 Journal of Physical Chemistry B 107 668

    [19]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [20]

    Evanoff D E, Chumanov G 2004 Journal of Physical Chemistry B 108 13957

    [21]

    Biteen J S, Sweatlock L A, Mertens H, Lewis N S, Polman A, Atwater H A 2007 Journal of Physical Chemistry C 111 13372

    [22]

    Cong C, Wu D J, Liu X J 2012 Acta Phys. Sin. 61 047802 (in Chinese) [丛超, 吴大建, 刘晓峻 2012 61 047802]

    [23]

    Jensen T R, Kelly L, Lazarides A, Schatz G 1999 Journal of Cluster Science 10 295

    [24]

    Chen F Y, Negash A, Johnston R L 2011 Advances 1 032134

  • [1] 王银霞, 白小川, 张勇, 李国庆. Al纳米颗粒高频局域等离激元效应对BCzVBi深蓝光有机发光器件发光效率的影响.  , 2024, 73(3): 037802. doi: 10.7498/aps.73.20230858
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型.  , 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振.  , 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [5] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究.  , 2021, (): . doi: 10.7498/aps.70.20210855
    [6] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控.  , 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [7] 李盼. 表面等离激元纳米聚焦研究进展.  , 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [8] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析.  , 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [9] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究.  , 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [10] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究.  , 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [11] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗.  , 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [12] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射.  , 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [13] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性.  , 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [14] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式.  , 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [15] 王培培, 杨超杰, 李洁, 唐鹏, 林峰, 朱星. 金膜上亚波长小孔阵列表面等离激元颜色滤波器偏振性质.  , 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [16] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析.  , 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [17] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究.  , 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [18] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究.  , 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [19] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究.  , 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [20] 蒋双凤, 孔凡敏, 李康, 高晖. 光偶极天线的远场方向性研究.  , 2011, 60(4): 045203. doi: 10.7498/aps.60.045203
计量
  • 文章访问数:  6871
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-14
  • 修回日期:  2015-05-13
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map