搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳复合结构表面稳定润湿状态及转型过程的热力学分析

吴兵兵 吴化平 张征 董晨晨 柴国钟

引用本文:
Citation:

微纳复合结构表面稳定润湿状态及转型过程的热力学分析

吴兵兵, 吴化平, 张征, 董晨晨, 柴国钟

Thermodynamic analysis of stable wetting states and wetting transition of micro/nanoscale structured surface

Wu Bing-Bing, Wu Hua-Ping, Zhang Zheng, Dong Chen-Chen, Chai Guo-Zhong
PDF
导出引用
  • 自然界中的微纳复合结构超疏水表面由于其独特的润湿性质引起了人们的广泛关注, 大量实验研究表明了仿生人工微纳复合结构表面润湿性能的优越性, 然而液滴在微纳复合结构表面的润湿状态和转型过程的理论研究还并不完善. 本文首先用热力学方法分析了液滴在微纳复合结构表面可能存在的所有状态(四种稳定润湿状态和五种亚稳态到稳定态转型中的过渡态), 推导出了相应的能量表达式及表观接触角方程; 基于最小能量原理, 确定液滴在微纳复合结构表面的稳定状态, 较以往模型相比, 能够更好的预测已有的实验结果; 其次研究了微纳结构尺寸对稳定润湿状态和亚稳态到稳定态转型过程的影响; 最后提出了微纳复合结构表面设计原则, 即确定“超疏水稳定区”尺寸范围, 为超疏水表面的制备提供理论依据.
    Superhydrophobicity of biological surfaces with micro/nanoscale hierarchical roughness has recently been given great attention and widely reported in many experimental studies due to the unique wettability. For example, the dual-scale structure of the lotus leaf not only shows high contact angle and low contact angle hysteresis but also presents good stability and mechanical properties. Though lots of experimental studies on the wettability of artificial hierarchical rough surface have been carried out, a thorough analysis on the contribution of micro- and nano-scaled roughness to the metastable wetting states and their transition is still lack. In this paper, a thermodynamic approach is applied to analyze all the wetting states (including four stable wetting states and five transition states) of a water droplet on a surface with micro/nanoscale hierarchical roughness, and the corresponding free energy expressions and apparent contact angle equations are deduced. The stable wetting states are confirmed by the principle of minimum free energy. And the calculated results by these state equations can fit well with the experimental results reported in the literature when compared with the previous models. Meanwhile, the influence of micro/nanoscale roughness on the stable wetting states and metastable-stable transition has been analyzed thermodynamically. It is found that there is a synergistic effect of micro and nanoscale roughness on wettability, which nlay result in many different wetting states. There are four wetting states during increasing relative pitch of a microscaled structure at a given nanoscaled structure, but two wetting states can be obtained as increasing relative pitch of nanoscaled structure at a given microscaled structure. The change of nondimensional energy and nondimensional energy barrier in the metastable-stable transition process of water droplet wetting micro and nanoscaled structure is quantitatively analyzed. Results indicate that the micro-scaled structure is never wetted in a special size range of the nanoscaled structure, and the special size range is of great significance to enhance superhydrophobic stability of the microscaled structure. Furthermore, the existence of microscaled structure decreases the transition energy barrier of water droplet wetting nanoscaled structure, which is helpful for understanding the experimental results reported in the literature. Finally, all possible stable wetting states of water droplet no a surface with micro/nanoscale hierarchical roughness are discribed in a wetting map. A design principle of superhydrophobic surface with micro/nanoscale hierarchical roughness is put forward, which is helpful to ensure the size of micro/nanoscale structure in the “stable superhydrophobic region” and to provide a theoretical guidance in the preparation of superhydrophobic surface.
      通信作者: 吴化平, wuhuaping@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 11372280, 51205355, 51275447)和浙江省教育厅项目(批准号: Y201432142)资助的课题.
      Corresponding author: Wu Hua-Ping, wuhuaping@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372280, 51205355, 51275447), and the Project of Education Bureau of Zhejiang Province, China (Grant No. Y201432142).
    [1]

    Neinhuis C, Barthlott W 1997 Ann. Bot. 79 667

    [2]

    Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W 2011 Beilstein J. Nanotechnol. 2 152

    [3]

    Bhushan B, Her E K 2010 Langmuir 26 8207

    [4]

    Gao H, Wang X, Yao H, Gorb S, Arzt E 2005 Mech. Mater. 37 275

    [5]

    Liu J L, Feng X Q, Xia R, Zhao H P 2007 J. Phys. D: Appl. Phys. 40 5564

    [6]

    Yang Z, Wu Y Z, Ye Y F, Gong M G, Xu X L 2012 Chin. Phys. B 21 126801

    [7]

    Bhushan B, Nosonovsky M 2010 Phil. Trans. R. Soc. A 368 4713

    [8]

    Young T 1805 Philos. Trans. R. Soc. London 95 65

    [9]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988

    [10]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [11]

    McHale G 2009 Langmuir 25 7185

    [12]

    Xia F, Jiang L 2008 Adv. Mater. 20 2842

    [13]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 56701

    [14]

    Yu J, Wang H J, Shao W J, Xu X L 2014 Chin. Phys. B 23 16803

    [15]

    Shirtcliffe N J, McHale G, Newton M I, Chabrol G, Perry C C 2004 Adv. Mater. 16 1929

    [16]

    Gao L, McCarthy T J 2006 Langmuir 22 2966

    [17]

    Patankar N A 2004 Langmuir 20 8209

    [18]

    Jeong H E, Lee S H, Kim J K, Suh K Y 2006 Langmuir 22 1640

    [19]

    Sajadinia S H, Sharif F 2010 J. Colloid Interface Sci. 344 575

    [20]

    Cha T G, Yi J W, Moon M W, Lee K R, Kim H Y 2010 Langmuir 26 8319

    [21]

    Wang S T, Jiang L 2007 Adv. Mater. 19 3423

    [22]

    Hejazi V, Nosonovsky M 2013 Colloid. Polym. Sci. 291 329

    [23]

    Bormashenko E, Starov V 2013 Colloid. Polym. Sci. 291 343

    [24]

    Boreyko J B, Baker C H, Poley C R, Chen C H 2011 Langmuir 27 7502

    [25]

    Barbieri L, Wagner E, Hoffmann P 2007 Langmuir 23 1723

    [26]

    Extrand C W 2004 Langmuir 205013

    [27]

    Zhao X W, Jiang P, Gao Y, Wang J X, Song L, Liu D F, Liu L F, Dou XY, Luo S D, Zhang Z X, Xiang Y J, Zhou W Y and Wang G 2005 Chin.Phys. 14 1471

    [28]

    Wang B, Nian J Y 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍 2013 62 146801]

    [29]

    2008 Eur. Phys. J. B 64 493

    [30]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [31]

    Nosonovsky M, Bhushan B 2007 Microelectron. Eng. 84 382

    [32]

    Xue Y H, Chu S G, Lv P Y, Duan H L 2012 Langmuir 28 9440

    [33]

    Whyman G, Bormashenko B 2011 Langmuir 27 8171

    [34]

    Jeong H E, Lee S H, Kim J K, Suh K Y 2006 Langmuir 22 1640

    [35]

    Pompe T, Herminghaus S 2000 Phys. Rev. Lett. 85 1930

    [36]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 59 2601]

    [37]

    Chen X, Ma R, Li J, Hao C, Guo W, Luk B L, Li S C, Yao S, Wang Z 2012 Phys. Rev. Lett. 109 116101

    [38]

    Öner D, McCarthy T J 2000 Langmuir 16 7777

    [39]

    Zheng Q S, Yu Y, Zhao Z H 2005 Langmuir 21 12207

    [40]

    Yao C W, Garvin T P, Alvarado J L, Jacobi A M, Jones B G, Marsh C P 2012 Appl. Phys. Lett. 101 111605

    [41]

    Li W, Amirfazli A 2005 J. Colloid Interface Sci. 292 195

  • [1]

    Neinhuis C, Barthlott W 1997 Ann. Bot. 79 667

    [2]

    Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W 2011 Beilstein J. Nanotechnol. 2 152

    [3]

    Bhushan B, Her E K 2010 Langmuir 26 8207

    [4]

    Gao H, Wang X, Yao H, Gorb S, Arzt E 2005 Mech. Mater. 37 275

    [5]

    Liu J L, Feng X Q, Xia R, Zhao H P 2007 J. Phys. D: Appl. Phys. 40 5564

    [6]

    Yang Z, Wu Y Z, Ye Y F, Gong M G, Xu X L 2012 Chin. Phys. B 21 126801

    [7]

    Bhushan B, Nosonovsky M 2010 Phil. Trans. R. Soc. A 368 4713

    [8]

    Young T 1805 Philos. Trans. R. Soc. London 95 65

    [9]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988

    [10]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [11]

    McHale G 2009 Langmuir 25 7185

    [12]

    Xia F, Jiang L 2008 Adv. Mater. 20 2842

    [13]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 56701

    [14]

    Yu J, Wang H J, Shao W J, Xu X L 2014 Chin. Phys. B 23 16803

    [15]

    Shirtcliffe N J, McHale G, Newton M I, Chabrol G, Perry C C 2004 Adv. Mater. 16 1929

    [16]

    Gao L, McCarthy T J 2006 Langmuir 22 2966

    [17]

    Patankar N A 2004 Langmuir 20 8209

    [18]

    Jeong H E, Lee S H, Kim J K, Suh K Y 2006 Langmuir 22 1640

    [19]

    Sajadinia S H, Sharif F 2010 J. Colloid Interface Sci. 344 575

    [20]

    Cha T G, Yi J W, Moon M W, Lee K R, Kim H Y 2010 Langmuir 26 8319

    [21]

    Wang S T, Jiang L 2007 Adv. Mater. 19 3423

    [22]

    Hejazi V, Nosonovsky M 2013 Colloid. Polym. Sci. 291 329

    [23]

    Bormashenko E, Starov V 2013 Colloid. Polym. Sci. 291 343

    [24]

    Boreyko J B, Baker C H, Poley C R, Chen C H 2011 Langmuir 27 7502

    [25]

    Barbieri L, Wagner E, Hoffmann P 2007 Langmuir 23 1723

    [26]

    Extrand C W 2004 Langmuir 205013

    [27]

    Zhao X W, Jiang P, Gao Y, Wang J X, Song L, Liu D F, Liu L F, Dou XY, Luo S D, Zhang Z X, Xiang Y J, Zhou W Y and Wang G 2005 Chin.Phys. 14 1471

    [28]

    Wang B, Nian J Y 2013 Acta Phys. Sin. 62 146801 (in Chinese) [王奔, 念敬妍 2013 62 146801]

    [29]

    2008 Eur. Phys. J. B 64 493

    [30]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [31]

    Nosonovsky M, Bhushan B 2007 Microelectron. Eng. 84 382

    [32]

    Xue Y H, Chu S G, Lv P Y, Duan H L 2012 Langmuir 28 9440

    [33]

    Whyman G, Bormashenko B 2011 Langmuir 27 8171

    [34]

    Jeong H E, Lee S H, Kim J K, Suh K Y 2006 Langmuir 22 1640

    [35]

    Pompe T, Herminghaus S 2000 Phys. Rev. Lett. 85 1930

    [36]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 59 2601]

    [37]

    Chen X, Ma R, Li J, Hao C, Guo W, Luk B L, Li S C, Yao S, Wang Z 2012 Phys. Rev. Lett. 109 116101

    [38]

    Öner D, McCarthy T J 2000 Langmuir 16 7777

    [39]

    Zheng Q S, Yu Y, Zhao Z H 2005 Langmuir 21 12207

    [40]

    Yao C W, Garvin T P, Alvarado J L, Jacobi A M, Jones B G, Marsh C P 2012 Appl. Phys. Lett. 101 111605

    [41]

    Li W, Amirfazli A 2005 J. Colloid Interface Sci. 292 195

  • [1] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为.  , 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [2] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究.  , 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [3] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析.  , 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [4] 徐威, 兰忠, 彭本利, 温荣福, 马学虎. 微液滴在不同能量表面上润湿状态的分子动力学模拟.  , 2015, 64(21): 216801. doi: 10.7498/aps.64.216801
    [5] 李春曦, 姜凯, 叶学民. 含活性剂液膜去润湿演化的稳定性特征.  , 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [6] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展.  , 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [7] 刘思思, 张朝辉, 何建国, 周杰, 尹恒洋. 亲水性微观粗糙表面润湿状态转变性能研究.  , 2013, 62(20): 206201. doi: 10.7498/aps.62.206201
    [8] 牛军, 张益军, 常本康, 熊雅娟. GaAs光电阴极激活后的表面势垒评估研究.  , 2011, 60(4): 044210. doi: 10.7498/aps.60.044210
    [9] 李广成, 陈雷明, 王东晓, 武大勇. 广义Birkhoff自治系统平衡状态的流形稳定性.  , 2010, 59(5): 2932-2934. doi: 10.7498/aps.59.2932
    [10] 丁国建, 郭丽伟, 邢志刚, 陈耀, 徐培强, 贾海强, 周均铭, 陈弘. 使用AlN/GaN超晶格势垒层生长高Al组分AlGaN/GaN HEMT结构.  , 2010, 59(8): 5724-5729. doi: 10.7498/aps.59.5724
    [11] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性.  , 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [12] 陈 浩, 邓金祥, 刘钧锴, 周 涛, 张 岩, 陈光华. 立方氮化硼薄膜沉积过程的相变研究.  , 2007, 56(6): 3418-3427. doi: 10.7498/aps.56.3418
    [13] 沈汉鑫, 蔡娜丽, 文玉华, 朱梓忠. Nb原子链的结构稳定性和电子性质.  , 2005, 54(11): 5362-5366. doi: 10.7498/aps.54.5362
    [14] 张晓丹, 赵 颖, 高艳涛, 朱 锋, 魏长春, 孙 建, 耿新华, 熊绍珍. 微晶硅薄膜的制备及结构和稳定性研究.  , 2005, 54(8): 3910-3914. doi: 10.7498/aps.54.3910
    [15] 袁焯权, 马中水, 李华钟. 一维复合势垒中的Larmor钟.  , 1998, 47(11): 1885-1895. doi: 10.7498/aps.47.1885
    [16] 王玉田, 庄岩, 江德生, 杨小平, 姜晓明, 武家杨, 修立松, 郑文莉. 双势垒超晶格结构的同步辐射及X射线双晶衍射研究.  , 1996, 45(10): 1709-1716. doi: 10.7498/aps.45.1709
    [17] 李永平, 方容川, 杨凤源, 张海峰. CdTe(111)表面的稳定性研究.  , 1995, 44(5): 788-794. doi: 10.7498/aps.44.788
    [18] 傅思祖, 顾援, 吴江, 王世绩, 何巨华. 超高压状态方程中激光驱动冲击波稳定性.  , 1995, 44(7): 1108-1112. doi: 10.7498/aps.44.1108
    [19] 许怀哲, 王印月, 张仿清, 陈光华. N重方势垒结构共振隧道效应研究.  , 1992, 41(9): 1493-1498. doi: 10.7498/aps.41.1493
    [20] 何寿安;徐济安. 一个等温状态方程(III) 高压下材料的稳定性.  , 1979, 28(4): 581-588. doi: 10.7498/aps.28.581
计量
  • 文章访问数:  6962
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-15
  • 修回日期:  2015-04-29
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map