搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu掺杂ZnO稀磁半导体磁电性能影响的模拟计算

侯清玉 许镇潮 乌云 赵二俊

引用本文:
Citation:

Cu掺杂ZnO稀磁半导体磁电性能影响的模拟计算

侯清玉, 许镇潮, 乌云, 赵二俊

Effects of Cu doped ZnO diluted magnetic semiconductors on magnetic and electrical performance from simulation and calculation

Hou Qing-Yu, Xu Zhen-Chao, Wu Yun, Zhao Er-Jun
PDF
导出引用
  • 在Cu重掺杂量摩尔数为0.02778–0.16667的范围内, 对ZnO掺杂体系磁电性能影响的第一性原理研究鲜见报道. 采用基于自旋密度泛函理论的平面波超软赝势方法, 用第一性原理计算了两种不同Cu单掺杂量Zn1-xCuxO (x=0.02778, 0.03125)超胞的能带结构分布和态密度分布. 结果表明, 掺杂体系是半金属化的稀磁半导体; Cu掺杂量越增加、相对自由空穴浓度越增加、空穴有效质量越减小、电子迁移率越减小、电子电导率越增加. 此结果利用电离能和Bohr半径进一步获得了证明, 计算结果与实验结果相符合. 在限定的掺杂量0.02778–0.0625 的条件下, Cu单掺杂量越增加、掺杂体系的体积越减小、总能量越升高、稳定性越下降、形成能越升高、掺杂越难. 在相同掺杂量、不同有序占位Cu双掺ZnO体系的条件下, 双掺杂Cu-Cu间距越增加, 掺杂体系磁矩先增加后减小; 当沿偏a轴或b轴方向Cu–O–Cu相近邻成键时, 掺杂体系会引起磁性猝灭; 当沿偏c轴方向Cu–O–Cu相近邻成键时, 掺杂体系居里温度能够达到室温以上的要求. 在限定的掺杂量0.0625–0.16667的条件下, 沿偏c轴方向Cu–O–Cu相近邻成键时, Cu 双掺杂量越增加, 掺杂体系总磁矩先增加后减小. 计算结果与实验结果变化趋势相符合.
    At present, the effects on the magnetic and electrical properties of Cu heavily doped ZnO with the mole amount of Cu being in a range of 0.02778-0.16667 are rarely studied by first-principles. Therefore two models for Zn1-xCuxO supercells (x=0.02778, 0.03125) are set up to calculate the band structures and density of states by using the plane-wave ultrasoft pseudopotential based on the spin-polarized density functional theory. The calculation results indicate that the doped systems are degenerate semiconductors, and they are semimetal diluted magnetic semiconductors. As the doping amount of Cu increases, the relative concentration of free holes increases, the effective mass of holes decreases, the electron mobility decreases and the electronic conductivity increases. These results are validated again by the analysis of ionization energy and Bohr radius, and they are consistent with the experimental data. As the doping amount of single-Cu increases from 0.02778 to 0.0625, the volume of doping system decreases, the total energy increases, the stability decreases, the formation energy increases and doping is more difficult. As the same concentration and the different doping modes for double-Cu doped, the magnetic moment of doping system first increases and then decreases with the increasing of spacing of Cu-Cu; while the bonds of nearest Cu–O–Cu lie along the a-axis or b-axis, the magnetic moment of doping system disappears; while the bonds of nearest Cu–O–Cu lie along the c-axis, the Curie temperature reaches a temperature above room temperature. As the doping amount of double-Cu increases from 0.0625 to 0.16667, the total magnetic moment of doping system first increases and then decreases, while the bonds of nearest Cu–O–Cu lie along the c-axis. The calculation results are consistent with the experimental data.
    • 基金项目: 国家自然科学基金(批准号: 61366008, 21261013)、教育部"春晖计划"和内蒙古自治区高等学校科学研究项目(批准号: NJZZ13099)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 21261013), the "Spring Sunshine" Project of Ministry of Education of China, and the College Science Research Project of Inner Mongolia Autonomous Region, China (Grant No. NJZZ13099).
    [1]

    Lu J, Li Z, Yin G L, Ge M Y, He D N, Wang H 2014 J. Appl. Phys. 116 123102

    [2]

    Liu W J, Tang X D, Tang Z, Chu F H, Zeng T, Tang N Y 2014 J. Alloy. Compd. 615 740

    [3]

    Wu Z F, Cheng K, Zhang F, Guan R F, Wu X M, Zhuge L J 2014 J. Alloy. Compd. 615 521

    [4]

    Li W C, Zuo Y L, Liu X H, Wei Q Q, Zhou X Y, Yao D S 2015 Chin. Phys. B 24 047503

    [5]

    Drmosh Q A, Rao S G, Yamani Z H, Gondal M A 2013 Appl. Surf. Sci. 270 104

    [6]

    Muthukumaran S, Gopalakrishnan R 2012 Opt. Mater. 34 1946

    [7]

    Kim C O, Kim S, Oh H T, Choi S H, Shon Y, Lee S, Hwang H N, Hwang C C 2010 Physica B 405 4678

    [8]

    Nia B A, Shahrokhi M, Moradian R, Manouchehri I 2014 Eur. Phys. J. Appl. Phys. 67 20403

    [9]

    Wan Z Z, Wan X L, Liu J P, Wang Q B 2014 J. Supercond. Nov. Magn. 27 1945

    [10]

    ElAmiri A, Lassri H, Abid M, Hlil E K 2014 Bull. Mater. Sci. 37 805

    [11]

    Gong J J, Chen J P, Zhang F, Wu H, Qin M H, Zeng M, Gao X S, Liu J M 2015 Chin. Phys. B 24 037505

    [12]

    Wang F, Lin W, Wang L C, Ge Y M, Zhang X T, Lin H R, Huang W W, Huang J Q 2014 Acta Phys. Sin. 63 157502 (in Chinese) [王锋, 林闻, 王丽兹, 葛永明, 张小婷, 林海容, 黄伟伟, 黄俊钦 2014 63 157502]

    [13]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [14]

    Lee H J, Jeong S Y, Cho C R, Park C H 2002 Appl. Phys. Lett. 81 4020

    [15]

    Wei M, Braddon N, Zhi D, Midgley P A, Chen S K, Blamire M G, Driscoll J L M 2005 Appl. Phys. Lett. 86 072514

    [16]

    Ahn K S, Deutsch T, Yan Y, Jiang C S, Perkins C L, Turner J, Jassim M A 2007 J. Appl. Phys. 102 023517

    [17]

    Ando K, Saito H, Jin Z 2001 J. Appl. Phys. 89 7284

    [18]

    Wang X F, Xu J B, Cheung W Y, An J, Ke N 2007 Appl. Phys. Lett. 90 212502

    [19]

    Seehra M S, Dutta P, Singh V, Zhang Y, Wender I

    [20]

    Sudakar C, Padmanabhan K, Naik R, Lawes G, Kirby B J, Kumar S, Naik V M 2008 Appl. Phys. Lett. 93 042502

    [21]

    Tiwari A, Snure M, Kumar D, Abiade J T 2008 Appl. Phys. Lett. 92 062509

    [22]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B: Condens. Matter 44 943

    [23]

    Sung N E, Kang S W, Shin H J, Lee H K, Lee I J

    [24]

    Tian Y, Li Y, He M, Putra I A, Peng H, Yao B, Wu T 2011 Appl. Phys. Lett. 98 162503

    [25]

    Narendra G L, Sreedhar B, Rao J L, Lakshman S V J 1991 J. Mater. Sci. 26 5342

    [26]

    Singhal S, Kaur J, Namgyal T, Sharma R 2012 Physica B 407 1223

    [27]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [28]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [29]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 1064

    [30]

    Sato K, Dederichs P H, KatayamaY H 2003 Europhys. Lett. 61 403

    [31]

    Lin Q B, Li Q R, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 55 873]

    [32]

    Ye L H, Freeman A J, Delley B

    [33]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [34]

    Buchholz D B, Chang R P H, Song J Y, Ketterson J B 2005 Appl. Phys. Lett. 87 082504

    [35]

    Pawar R C, Choi D H, Lee J S, Lee C S 2015 Mater. Chem. Phys. 151 167

    [36]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [37]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1998 半导体物理(西安: 西安交通大学出版社)第103页]

    [38]

    Schleife A, Fuchs F, Furthmüller J 2006 J. Phys. Rev. B 73 245212

    [39]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [40]

    Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials Beijing China, September 20-25, 2004 pp81-84

  • [1]

    Lu J, Li Z, Yin G L, Ge M Y, He D N, Wang H 2014 J. Appl. Phys. 116 123102

    [2]

    Liu W J, Tang X D, Tang Z, Chu F H, Zeng T, Tang N Y 2014 J. Alloy. Compd. 615 740

    [3]

    Wu Z F, Cheng K, Zhang F, Guan R F, Wu X M, Zhuge L J 2014 J. Alloy. Compd. 615 521

    [4]

    Li W C, Zuo Y L, Liu X H, Wei Q Q, Zhou X Y, Yao D S 2015 Chin. Phys. B 24 047503

    [5]

    Drmosh Q A, Rao S G, Yamani Z H, Gondal M A 2013 Appl. Surf. Sci. 270 104

    [6]

    Muthukumaran S, Gopalakrishnan R 2012 Opt. Mater. 34 1946

    [7]

    Kim C O, Kim S, Oh H T, Choi S H, Shon Y, Lee S, Hwang H N, Hwang C C 2010 Physica B 405 4678

    [8]

    Nia B A, Shahrokhi M, Moradian R, Manouchehri I 2014 Eur. Phys. J. Appl. Phys. 67 20403

    [9]

    Wan Z Z, Wan X L, Liu J P, Wang Q B 2014 J. Supercond. Nov. Magn. 27 1945

    [10]

    ElAmiri A, Lassri H, Abid M, Hlil E K 2014 Bull. Mater. Sci. 37 805

    [11]

    Gong J J, Chen J P, Zhang F, Wu H, Qin M H, Zeng M, Gao X S, Liu J M 2015 Chin. Phys. B 24 037505

    [12]

    Wang F, Lin W, Wang L C, Ge Y M, Zhang X T, Lin H R, Huang W W, Huang J Q 2014 Acta Phys. Sin. 63 157502 (in Chinese) [王锋, 林闻, 王丽兹, 葛永明, 张小婷, 林海容, 黄伟伟, 黄俊钦 2014 63 157502]

    [13]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [14]

    Lee H J, Jeong S Y, Cho C R, Park C H 2002 Appl. Phys. Lett. 81 4020

    [15]

    Wei M, Braddon N, Zhi D, Midgley P A, Chen S K, Blamire M G, Driscoll J L M 2005 Appl. Phys. Lett. 86 072514

    [16]

    Ahn K S, Deutsch T, Yan Y, Jiang C S, Perkins C L, Turner J, Jassim M A 2007 J. Appl. Phys. 102 023517

    [17]

    Ando K, Saito H, Jin Z 2001 J. Appl. Phys. 89 7284

    [18]

    Wang X F, Xu J B, Cheung W Y, An J, Ke N 2007 Appl. Phys. Lett. 90 212502

    [19]

    Seehra M S, Dutta P, Singh V, Zhang Y, Wender I

    [20]

    Sudakar C, Padmanabhan K, Naik R, Lawes G, Kirby B J, Kumar S, Naik V M 2008 Appl. Phys. Lett. 93 042502

    [21]

    Tiwari A, Snure M, Kumar D, Abiade J T 2008 Appl. Phys. Lett. 92 062509

    [22]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B: Condens. Matter 44 943

    [23]

    Sung N E, Kang S W, Shin H J, Lee H K, Lee I J

    [24]

    Tian Y, Li Y, He M, Putra I A, Peng H, Yao B, Wu T 2011 Appl. Phys. Lett. 98 162503

    [25]

    Narendra G L, Sreedhar B, Rao J L, Lakshman S V J 1991 J. Mater. Sci. 26 5342

    [26]

    Singhal S, Kaur J, Namgyal T, Sharma R 2012 Physica B 407 1223

    [27]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [28]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [29]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 1064

    [30]

    Sato K, Dederichs P H, KatayamaY H 2003 Europhys. Lett. 61 403

    [31]

    Lin Q B, Li Q R, Zeng Y Z, Zhu Z Z 2006 Acta Phys. Sin. 55 873 (in Chinese) [林秋宝, 李仁全, 曾永志, 朱梓忠 2006 55 873]

    [32]

    Ye L H, Freeman A J, Delley B

    [33]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [34]

    Buchholz D B, Chang R P H, Song J Y, Ketterson J B 2005 Appl. Phys. Lett. 87 082504

    [35]

    Pawar R C, Choi D H, Lee J S, Lee C S 2015 Mater. Chem. Phys. 151 167

    [36]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [37]

    Lu E K, Zhu B S, Luo J S 1998 Semiconductor Physics (Xi'an: Xi'an Jiaotong University Press) p103 (in Chinese) [刘恩科, 朱秉升, 罗晋生 1998 半导体物理(西安: 西安交通大学出版社)第103页]

    [38]

    Schleife A, Fuchs F, Furthmüller J 2006 J. Phys. Rev. B 73 245212

    [39]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [40]

    Zhou C, Kang J 2004 13th Proceedings of the International Conference on Semiconducting and Insulating Materials Beijing China, September 20-25, 2004 pp81-84

  • [1] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响.  , 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [2] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究.  , 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [3] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质.  , 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [4] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析.  , 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [5] 马振宁, 周全, 汪青杰, 王逊, 王磊. Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究.  , 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [6] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究.  , 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [7] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究.  , 2015, 64(3): 037501. doi: 10.7498/aps.64.037501
    [8] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究.  , 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [9] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [10] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算.  , 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [11] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [12] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [13] 侯清玉, 乌云, 赵春旺. Magnli相亚氧化钛的莫特相变和磁电性能的模拟计算.  , 2013, 62(23): 237102. doi: 10.7498/aps.62.237102
    [14] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究.  , 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [15] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [16] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究.  , 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [17] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究.  , 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [18] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究.  , 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
计量
  • 文章访问数:  5599
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-22
  • 修回日期:  2015-04-14
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map