搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国产光纤实现直接抽运全光纤化3000 W级激光输出

王雪娇 肖起榕 闫平 陈霄 李丹 杜城 莫琦 衣永青 潘蓉 巩马理

引用本文:
Citation:

国产光纤实现直接抽运全光纤化3000 W级激光输出

王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理

3000 W direct-pumping all-fiber laser based on domestically produced fiber

Wang Xue-Jiao, Xiao Qi-Rong, Yan Ping, Chen Xiao, Li Dan, Du Cheng, Mo Qi, Yi Yong-Qing, Pan Rong, Gong Ma-Li
PDF
导出引用
  • 基于国产光纤构建了直接抽运全光纤化主控振荡器功率放大器结构光纤激光器, 放大级分别采用武汉烽火锐光科技有限公司和中国电子科技集团公司第四十六研究所提供的国产20/400 μm掺镱双包层光纤作为增益光纤, 通过全国产化放大级实现了3050和3092 W的1080 nm激光输出. 放大级提取效率分别为67.3%和68.2%, 光-光效率分别为63.0%和63.9%. 据可查询资料, 这是公开报道的直接抽运全光纤激光输出的最高水平, 同时由于采用了国产光纤作为放大级增益光纤, 表明国产光纤具备了3 kW级光纤激光器输出能力. 通过国产光纤横截端面以及光纤熔接显微镜图像实验分析知, 光纤制造工艺的不足是导致国产光纤激光器效率低的主要原因. 继续改进光纤工艺, 提升抽运功率, 优化光纤长度, 有望实现更高功率的全国产化光纤激光器输出.
    In this paper we present an all-fiber directly pumped fiber laser in master oscillator power amplifier configuration based on domestically manufactured fibers. In the amplifier stage of the laser, the gain fibers adopt the 20/400 μm Yb-doped double cladding fibers manufactured separately by Wuhan Fiber Home Technologies Group and China Electronics Technology Group Corporation No. 46 Research Institute in two individual experiments. Via this homemade amplifier stage, the system achieves a 1080 nm fiber laser with output powers of 3050 W and 3092 W respectively with two types of fibers. When the gain fiber of the amplifier adopts the YDF manufactured by Wuhan Fiber Home Technologies Group, the corresponding extraction efficiency and the optical-to-optical efficiency reach 67.3% and 63.0% respectively. No residual pump laser is found in the spectrum of output laser, and the beam quality is measured to be M2<2. Similarly, when the gain fiber of the amplifier adopts the YDF manufactured by China Electronics Technology Group Corporation No. 46 Research Institute, the corresponding extraction efficiency and the optical-to-optical efficiency reach 68.2% and 63.9% respectively. To the best of our knowledge, this is the best result ever reported for directly pumped all-fiber laser. Meanwhile, as we use the domestically manufactured fiber as the gain fiber in the amplifier stage, the result verifies the usage of homemade active fibers in 3-kilowatt level fiber laser. By combining the results of the high power fiber laser, the low efficiency of domestic fiber laser in our experiment might be explained to be due to defects in fiber manufacturing process, the inhomogeneous refractive index of the core, structural flaw of the homemade fiber observed by the microscopic images of the cross section and the splicing fuse of homemade fibers. The main difficulty of these two experiments lies in the heat dissipation of the gain fiber in the amplifier stage. Also, due to the restriction of experimental condition, photodarkening test is unable to run for a longer period of time, which is the focus of our further work. Therefore, measures such as refining fiber manufacturing techniques, increasing pump power and optimizing the length of fiber are suggested to be taken in order to obtain a higher output power from homemade fiber laser.
    • 基金项目: 国家自然科学基金(批准号: 61307057)和中国博士后科学基金(批准号: 2012M520258, 2013T60109)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61307057) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520258, 2013T60109).
    [1]

    Cesar J, Jens L, Andreas T 2013 Nat. Photon. 7 861

    [2]

    Tao R M, Zhou P, Wang X L, Si L, Liu Z J 2014 Acta Phys. Sin. 63 085202 (in Chinese) [陶汝茂, 周朴, 王小林, 司磊, 刘泽金 2014 63 085202]

    [3]

    Stiles E 2009 Proceedings of the 5th International Workshop on Fiber Lasers

    [4]

    Jeong Y C, Boyland A J, Sahu J K, Chung S H, Nilsson J, Payne D N 2009 J. Opt. Soc. Korea 13 416

    [5]

    Samson B, Carter A, Tankala K 2011 Nat. Photon. 5 466

    [6]

    Langnera A, Sucha M, Schötza G, Justb F, Leichb M, Schwuchowb A, Grimmb St, Zimerc H, Kozakc M, Wedelc B, Rehmannd G, Bachertd C, Krause V 2012 Proc. SPIE 8237 82370F

    [7]

    Khitrov V, Minelly J D, Tumminelli R, Petit V, Pooler E S 2014 Proc. SPIE 8961 89610

    [8]

    Wirth C, Schmidt O, Kliner A, Schreiber T, Eberhardt R, Tünnermann A 2011 Opt. Lett. 36 3061

    [9]

    Yan P, Xiao Q R, Fu C, Wang Y P, Gong M L 2012 Chin. J. Lasers 39 0416001 (in Chinese) [闫平, 肖起榕, 付晨, 王亚平, 巩马理 2012 中国激光 39 0416001]

    [10]

    Liu Z J, Leng J Y, Guo S F, Wang W L, Huang L J, Cao J Q, Si L, Xu X J, Chen J B 2013 Chin. J. Lasers 40 0908003 (in Chinese) [刘泽金, 冷进勇, 郭少锋, 王文亮, 黄良金, 曹涧秋, 司磊, 许晓军, 陈金宝 2013 中国激光 40 0908003]

    [11]

    Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162

    [12]

    Li C, Yan P, Chen G, Gong M L, Yuan Y Y 2006 Chin. J. Lasers 33 738 (in Chinese) [李晨, 闫平, 陈刚, 巩马理, 袁艳阳 2006 中国激光 33 738]

    [13]

    He B, Zhou J, Lou Q H, Xue Y H, Li Z, Wang W, Dong J X, Wei Y R, Chen W B 2010 Microw. Opt. Techn. Let. 52 1668

    [14]

    Wang X L, Gong Z Q, Zhou P, Guo S F, Si L, Xu X J, Chen J B 2012 Chin. J. Lasers 39 0408007 (in Chinese) [王小林, 龚智群, 周朴, 郭少锋, 司磊, 许晓军, 陈金宝 2012 中国激光 39 0408007]

    [15]

    Yuan Y Y 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [袁艳阳 2008 博士学位论文(北京: 清华大学)]

    [16]

    Xiang P, Liang D 2008 J. Opt. Soc. Am. B 25 127

    [17]

    Kelson I, Hardy A A1998 IEEE J. Quantum Elect. 34 1570

    [18]

    Gong M L, Yuan Y Y, Li C, Yan P, Zhang H T, Liao S Y 2007 Opt. Express 15 3236

  • [1]

    Cesar J, Jens L, Andreas T 2013 Nat. Photon. 7 861

    [2]

    Tao R M, Zhou P, Wang X L, Si L, Liu Z J 2014 Acta Phys. Sin. 63 085202 (in Chinese) [陶汝茂, 周朴, 王小林, 司磊, 刘泽金 2014 63 085202]

    [3]

    Stiles E 2009 Proceedings of the 5th International Workshop on Fiber Lasers

    [4]

    Jeong Y C, Boyland A J, Sahu J K, Chung S H, Nilsson J, Payne D N 2009 J. Opt. Soc. Korea 13 416

    [5]

    Samson B, Carter A, Tankala K 2011 Nat. Photon. 5 466

    [6]

    Langnera A, Sucha M, Schötza G, Justb F, Leichb M, Schwuchowb A, Grimmb St, Zimerc H, Kozakc M, Wedelc B, Rehmannd G, Bachertd C, Krause V 2012 Proc. SPIE 8237 82370F

    [7]

    Khitrov V, Minelly J D, Tumminelli R, Petit V, Pooler E S 2014 Proc. SPIE 8961 89610

    [8]

    Wirth C, Schmidt O, Kliner A, Schreiber T, Eberhardt R, Tünnermann A 2011 Opt. Lett. 36 3061

    [9]

    Yan P, Xiao Q R, Fu C, Wang Y P, Gong M L 2012 Chin. J. Lasers 39 0416001 (in Chinese) [闫平, 肖起榕, 付晨, 王亚平, 巩马理 2012 中国激光 39 0416001]

    [10]

    Liu Z J, Leng J Y, Guo S F, Wang W L, Huang L J, Cao J Q, Si L, Xu X J, Chen J B 2013 Chin. J. Lasers 40 0908003 (in Chinese) [刘泽金, 冷进勇, 郭少锋, 王文亮, 黄良金, 曹涧秋, 司磊, 许晓军, 陈金宝 2013 中国激光 40 0908003]

    [11]

    Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162

    [12]

    Li C, Yan P, Chen G, Gong M L, Yuan Y Y 2006 Chin. J. Lasers 33 738 (in Chinese) [李晨, 闫平, 陈刚, 巩马理, 袁艳阳 2006 中国激光 33 738]

    [13]

    He B, Zhou J, Lou Q H, Xue Y H, Li Z, Wang W, Dong J X, Wei Y R, Chen W B 2010 Microw. Opt. Techn. Let. 52 1668

    [14]

    Wang X L, Gong Z Q, Zhou P, Guo S F, Si L, Xu X J, Chen J B 2012 Chin. J. Lasers 39 0408007 (in Chinese) [王小林, 龚智群, 周朴, 郭少锋, 司磊, 许晓军, 陈金宝 2012 中国激光 39 0408007]

    [15]

    Yuan Y Y 2008 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [袁艳阳 2008 博士学位论文(北京: 清华大学)]

    [16]

    Xiang P, Liang D 2008 J. Opt. Soc. Am. B 25 127

    [17]

    Kelson I, Hardy A A1998 IEEE J. Quantum Elect. 34 1570

    [18]

    Gong M L, Yuan Y Y, Li C, Yan P, Zhang H T, Liao S Y 2007 Opt. Express 15 3236

  • [1] 段磊, 徐润亲, 宋云波, 谭姝丹, 梁成斌, 徐帆江, 刘朝晖. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究.  , 2023, 72(10): 104203. doi: 10.7498/aps.72.20222464
    [2] 文榆钧, 王鹏, 奚小明, 张汉伟, 黄良金, 杨欢, 闫志平, 杨保来, 史尘, 潘志勇, 王小林, 王泽锋, 许晓军. 激光二极管直接后向泵浦的高光束质量万瓦光纤激光器.  , 2022, 71(24): 244202. doi: 10.7498/aps.71.20221433
    [3] 安毅, 潘志勇, 杨欢, 黄良金, 马鹏飞, 闫志平, 姜宗福, 周朴. 国产长锥形光纤实现400 W单频单模激光输出.  , 2021, 70(20): 204204. doi: 10.7498/aps.70.20210682
    [4] 张志伦, 张芳芳, 林贤峰, 王世杰, 曹驰, 邢颍滨, 廖雷, 李进延. 国产部分掺杂光纤实现3 kW全光纤激光振荡输出.  , 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [5] 窦志远, 张斌, 刘帅林, 侯静. 高功率全光纤1.6微米类噪声方形脉冲激光器.  , 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [6] 王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐, 潘蓉, 黄昱升, 田佳丁, 李丹, 闫平, 巩马理. 国产光纤实现同带抽运3000 W激光输出.  , 2018, 67(2): 024205. doi: 10.7498/aps.67.20171676
    [7] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器.  , 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [8] 毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅. 激光二极管双端直接抽运混合腔板条激光器.  , 2015, 64(1): 014203. doi: 10.7498/aps.64.014203
    [9] 沈骁, 邹辉, 郑锐林, 郑加金, 韦玮. 增益导引-折射率反导引大模场光纤激光器抽运技术研究进展.  , 2015, 64(2): 024210. doi: 10.7498/aps.64.024210
    [10] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器.  , 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [11] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲.  , 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [12] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器.  , 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [13] 朱亚东, 肖虎, 王小林, 马阎星, 周朴. 利用全光纤结构Michelson腔实现两路高功率双包层光纤激光器相干合成.  , 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [14] 董小林, 肖虎, 马阎星, 周朴, 郭少锋. 高功率全光纤保偏主振荡功率放大型光纤激光器的实验研究.  , 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [15] 杨未强, 侯静, 宋锐, 刘泽金. 高功率光纤激光器二级抽运技术的理论分析.  , 2011, 60(8): 084210. doi: 10.7498/aps.60.084210
    [16] 延凤平, 魏淮, 傅永军, 王琳, 郑凯, 毛向桥, 刘鹏, 彭健, 刘利松, 简水生. 石英基掺Tm3+包层抽运光纤激光器.  , 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [17] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响.  , 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [18] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定.  , 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [19] 黄绣江, 刘永智, 隋 展, 李明中, 李 忻, 林宏奂, 王建军. 全光纤超短脉冲掺Yb3+光纤环形激光器.  , 2006, 55(3): 1191-1195. doi: 10.7498/aps.55.1191
    [20] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器.  , 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
计量
  • 文章访问数:  7147
  • PDF下载量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-02
  • 修回日期:  2015-03-12
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map