-
Nowadays, X-ray nanoprobe plays an important role in many research fields, ranging from materials science to geophysics and environmental science, to biophysics and protein crystallography. Refractive lenses, mirrors, and Laue lenses, can all focus X-rays into a spot with a size of less than 50 nm. To design a refractive lens at fixed wavelengths, absorption in the lens material can be significantly reduced by removing 2πup phase-shifting regions. This permits short focal length devices to be fabricated with small radii of curvatures at the lens apex. This feature allows one to obtain a high efficiency X-ray focusing. The reduced absorption loss also enables optics with a larger aperture, and hence improving the resolution for focusing. Since the single Kinoform lens can focus hard X-ray into a spot on a nanoscale efficiently, it has very important application prospect in X-ray nano-microscopy and nano-spectroscopy. We present a theoretical analysis of optical properties of the single Kinoform lens. Using Fermat's principle of least time, an exact solution of the single Kinoform lens figure is derived. The X-ray diffraction theory is reviewed. The complex amplitude transmittance function of the X-ray single Kinoform lens is derived. According to Fourier optics and optical diffraction theory, we set up the physical model of X-ray single Kinoform lens focusing. Employing this physical model, we study how the focusing performance of hard X-ray single Kinoform lens is influenced by the material, the photon energy, the number of steps and the vertex radius of curvature. We find that diamond single Kinoform lens can achieve a smaller focusing beam size with higher intensity gain than Al and Si single Kinoform lens. The single Kinoform lens designed at a certain photon energy can also focus other photon energies with different lateral beam sizes, axial beam sizes, intensity gains and focusing distances. The numbers of steps of a single Kinoform lens can be lessened with the thickness of step increasing, while the single Kinoform lens keeps good focusing performance. To improve the focusing performance further, reducing the vertex radius of curvature is proposed. Following these rules, a single Kinoform lens is optimally designed to focus 30 keV hard X-ray down to a lateral size of 14 nm (full-width at half-maximum, FWHM) and an axial size of 62 μm (FWHM) with an intensity gain of four orders of magnitude and transmittance of 30%.
-
Keywords:
- hard X-ray /
- Kinoform /
- focusing /
- physical optics
[1] Vartanyants I A, Singer A 2010 New J. Phys. 12 035004
[2] Yabashi M, Tono K, Mimura H, Matsuyama S, Yamauchi K, Tanaka T, Tanaka H, Tamasaku K, Ohashi H, Goto S, Ishikawa T 2014 J. Synchrotron Rad. 21 976
[3] Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202 (in Chinese) [戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 63 104202]
[4] Ice G E, Budai J D, Pang J W L 2011 Science 334 1234
[5] Sakdinawat A, Attwood D 2010 Nat. Photon. 4 840
[6] Liu H Q, Ren Y Q, Zhou G Z, He Y, Xue Y L, Xiao T Q 2012 Acta Phys. Sin. 61 078701 (in Chinese) [刘慧强, 任玉琦, 周光照, 和友, 薛艳玲, 肖体乔 2012 61 078701]
[7] Wang Y D, Peng G Y, Tong Y J, Zhou G Z, Ren Y Q, Yang Q, Xiao T Q 2012 Acta Phys. Sin. 61 054205 (in Chinese) [王玉丹, 彭冠云, 佟亚军, 周光照, 任玉琦, 杨群, 肖体乔 2012 61 054205]
[8] Döring F, Robisch A L, Eberl C, Osterhoff M, Ruhlandt A, Liese T, Schlenkrich F, Hoffmann S, Bartels M, Salditt T, Krebs H U 2013 Opt. Express 21 19311
[9] Huang X, Yan H, Nazaretski E, Conley R, Bouet N, Zhou J, Lauer K, Li L, Eom D, Legnini D, Harder R, Robinson I K, Chu Y S 2013 Sci. Rep. 3 3562
[10] Mimura H, Handa S, Kimura T, Yumoto H, Yamakawa D, Yokoyama H, Matsuyama S, Inagaki K, Yamamura K, Sano Y, Tamasaku K, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2010 Nat. Phys. 6 122
[11] Schroer C G, Kurapova O, Patommel J, Boye P, Feldkamp J, Lengeler B, Burghammer M, Riekel C, Vincze L, van der Hart A, Küuchler M 2005 Appl. Phys. Lett. 87 124103
[12] Kang H C, Yan H, Winarski R P, Holt M V, Maser J, Liu C, Conley R, Vogt S, Macrander A T, Stephenson G B 2008 Appl. Phys. Lett. 92 221114
[13] Snigirev A, Kohn V, Snigireva I, Lengeler B 1996 Nature 384 49
[14] Chen Z, Xie H L, Deng B, Du G H, Jiang H D, Xiao T Q 2014 Chin. Opt. Lett. 12 123401
[15] Snigirev A, Snigireva I 2008 C. R. Physique 9 507
[16] Elleaume P 1998 J. Synchrotron Rad. 5 1
[17] Kohmura Y, Awaji M, Suzuki Y, Ishikawa T, Dudchik Y I, Kolchevsky N N, Komarov F F 1999 Rev. Sci. Instrum. 70 4161
[18] Lengeler B, Schroer C G, Richwin M, Tummler J, Drakopoulos M, Snigirev A, Snigireva I 1999 Appl. Phys. Lett. 74 3924
[19] Schroer C G,Gunzler T F, Benner B, Kuhlmann M, Tummler J, Lengeler B, Rau C, Weitkamp T, Snigirev A, Snigireva I 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 467 966
[20] Aristov V, Grigoricv M, Kuznetsov S, Shabclnikov L, Yunkin V, Hoffmann M, Vogcs E 2000 Opt. Commun. 177 33
[21] Schroer C G, Kuhlmann M, Hunger U T, Günzler T F, Kurapova O, Feste S, Frehse F, Lengeler B, Drakopoulos M, Somogyi A, Simionovici A S, Snigirev A, Snigireva I, Schug C, Schroder W H 2003 Appl. Phys. Lett. 82 1485
[22] Evans-Lutterodt K, Stein A, Ablett J M, Bozovic N, Taylor A, Tennant D M 2007 Phys. Rev. Lett. 99 134801
[23] Alianelli L, Sawhney K J S, Barrett R, Pape I, Malik A, Wilson M C 2011 Opt. Express 19 11120
[24] Kohn V G 2012 J. Synchrotron Rad. 19 84
[25] Sánchez del Río M 2013 J. Phys.: Conf. Ser. 425 162003
[26] Canestrari N, Chubar O, Reininger R 2014 J. Synchrotron Rad. 21 1110
[27] Born M, Wolf E 1980 Principles of Optics (Oxford: Pergamon Press) p376
[28] Sales T R M, Morris G M 1997 Appl. Opt. 36 253
[29] Buralli D A, Morris G M, Rogers J R 1989 Appl. Opt. 28 976
[30] Lund M W 1997 J. X-Ray Sci. Technol. 7 265
-
[1] Vartanyants I A, Singer A 2010 New J. Phys. 12 035004
[2] Yabashi M, Tono K, Mimura H, Matsuyama S, Yamauchi K, Tanaka T, Tanaka H, Tamasaku K, Ohashi H, Goto S, Ishikawa T 2014 J. Synchrotron Rad. 21 976
[3] Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202 (in Chinese) [戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 63 104202]
[4] Ice G E, Budai J D, Pang J W L 2011 Science 334 1234
[5] Sakdinawat A, Attwood D 2010 Nat. Photon. 4 840
[6] Liu H Q, Ren Y Q, Zhou G Z, He Y, Xue Y L, Xiao T Q 2012 Acta Phys. Sin. 61 078701 (in Chinese) [刘慧强, 任玉琦, 周光照, 和友, 薛艳玲, 肖体乔 2012 61 078701]
[7] Wang Y D, Peng G Y, Tong Y J, Zhou G Z, Ren Y Q, Yang Q, Xiao T Q 2012 Acta Phys. Sin. 61 054205 (in Chinese) [王玉丹, 彭冠云, 佟亚军, 周光照, 任玉琦, 杨群, 肖体乔 2012 61 054205]
[8] Döring F, Robisch A L, Eberl C, Osterhoff M, Ruhlandt A, Liese T, Schlenkrich F, Hoffmann S, Bartels M, Salditt T, Krebs H U 2013 Opt. Express 21 19311
[9] Huang X, Yan H, Nazaretski E, Conley R, Bouet N, Zhou J, Lauer K, Li L, Eom D, Legnini D, Harder R, Robinson I K, Chu Y S 2013 Sci. Rep. 3 3562
[10] Mimura H, Handa S, Kimura T, Yumoto H, Yamakawa D, Yokoyama H, Matsuyama S, Inagaki K, Yamamura K, Sano Y, Tamasaku K, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2010 Nat. Phys. 6 122
[11] Schroer C G, Kurapova O, Patommel J, Boye P, Feldkamp J, Lengeler B, Burghammer M, Riekel C, Vincze L, van der Hart A, Küuchler M 2005 Appl. Phys. Lett. 87 124103
[12] Kang H C, Yan H, Winarski R P, Holt M V, Maser J, Liu C, Conley R, Vogt S, Macrander A T, Stephenson G B 2008 Appl. Phys. Lett. 92 221114
[13] Snigirev A, Kohn V, Snigireva I, Lengeler B 1996 Nature 384 49
[14] Chen Z, Xie H L, Deng B, Du G H, Jiang H D, Xiao T Q 2014 Chin. Opt. Lett. 12 123401
[15] Snigirev A, Snigireva I 2008 C. R. Physique 9 507
[16] Elleaume P 1998 J. Synchrotron Rad. 5 1
[17] Kohmura Y, Awaji M, Suzuki Y, Ishikawa T, Dudchik Y I, Kolchevsky N N, Komarov F F 1999 Rev. Sci. Instrum. 70 4161
[18] Lengeler B, Schroer C G, Richwin M, Tummler J, Drakopoulos M, Snigirev A, Snigireva I 1999 Appl. Phys. Lett. 74 3924
[19] Schroer C G,Gunzler T F, Benner B, Kuhlmann M, Tummler J, Lengeler B, Rau C, Weitkamp T, Snigirev A, Snigireva I 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 467 966
[20] Aristov V, Grigoricv M, Kuznetsov S, Shabclnikov L, Yunkin V, Hoffmann M, Vogcs E 2000 Opt. Commun. 177 33
[21] Schroer C G, Kuhlmann M, Hunger U T, Günzler T F, Kurapova O, Feste S, Frehse F, Lengeler B, Drakopoulos M, Somogyi A, Simionovici A S, Snigirev A, Snigireva I, Schug C, Schroder W H 2003 Appl. Phys. Lett. 82 1485
[22] Evans-Lutterodt K, Stein A, Ablett J M, Bozovic N, Taylor A, Tennant D M 2007 Phys. Rev. Lett. 99 134801
[23] Alianelli L, Sawhney K J S, Barrett R, Pape I, Malik A, Wilson M C 2011 Opt. Express 19 11120
[24] Kohn V G 2012 J. Synchrotron Rad. 19 84
[25] Sánchez del Río M 2013 J. Phys.: Conf. Ser. 425 162003
[26] Canestrari N, Chubar O, Reininger R 2014 J. Synchrotron Rad. 21 1110
[27] Born M, Wolf E 1980 Principles of Optics (Oxford: Pergamon Press) p376
[28] Sales T R M, Morris G M 1997 Appl. Opt. 36 253
[29] Buralli D A, Morris G M, Rogers J R 1989 Appl. Opt. 28 976
[30] Lund M W 1997 J. X-Ray Sci. Technol. 7 265
计量
- 文章访问数: 7229
- PDF下载量: 319
- 被引次数: 0