搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声光滤光和液晶相位调谐的高光谱全偏振成像新技术

李克武 王志斌 杨常青 张瑞 王耀利 宋雁鹏

引用本文:
Citation:

基于声光滤光和液晶相位调谐的高光谱全偏振成像新技术

李克武, 王志斌, 杨常青, 张瑞, 王耀利, 宋雁鹏

A new technique of full polarization hyperspectral imaging based on acousto-optic tunable filter and liquid crystal variable retarder

Li Ke-Wu, Wang Zhi-Bin, Yang Chang-Qing, Zhang Rui, Wang Yao-Li, Song Yan-Peng
PDF
导出引用
  • 为了获取高光谱分辨率、高空间分辨率、高偏振精度、高信噪比和稳定性好的全部Stokes参量光谱图像, 考虑到声光可调谐滤光器(acousto-optical tunable filter, AOTF)的±1级衍射光的正交特性, 提出用一个AOTF滤光, 一个液晶可变延迟器(liquid crystal variable retarder, LCVR)进行相位调制和两个CCD相机分别对±1级衍射光成像的高光谱全偏振成像新技术. 从所采用的光学元件的穆勒矩阵出发, 阐述了该技术的基本工作原理; 理论分析表明, LCVR不但不会影响到第一个Stokes参量的探测精度, 而且后3个Stokes参量的相对误差分别优于0.064%, 0.31%和3.97%; 利用原理样机获取了450–700 nm、光谱带宽为10 nm的26个光谱通道的图像数据, 成像质量良好; 以工作波长为600 nm的入射光为例, 对其全部Stokes参量图像进行了具体分析讨论. 结果表明, 该新技术原理正确, 方案可行. 该研究可为光谱偏振成像技术提供新的理论和实现方案.
    In order to achieve all Stokes parameters of spectral image with high spectral resolution, high spatial resolution, high polarization accuracy, high signal-to-noise ratio and good stability, taking into account the orthogonal characteristic of ±1 order diffraction light which diffracts from a acousto-optic tunable filter (AOTF), a new technique of full polarization hyperspectral imaging is presented. It uses one AOTF to diffract the incident light, one liquid crystal variable retarder (LCVR) to modulate the light retardation, and two CCDs to image the ±1 order diffraction light, respectively. According to the Muller matrixes of all optical elements in the system, the basic working principle of the new technique is that LCVR sequentially provides the retardation 2π, 1.5π, π and 0.5π for each spectral channel, so the CCD obtains corresponding images. After analyzing these images, the all Stokes parameters are obtained; the precision of this system for polarization imaging is determined mainly by polarization modulation device LCVR. Considering the azimuth of LCVR fast axis and retardation precision at the same time, it is unveiled that LCVR has no effect on the accuracy of the first Stokes parameter, and the relative errors of other latter 3 Stokes parameters are less than 0.064%, 0.31% and 3.97%; then, our prototype system is used to do the outdoor experiments in a summer sunny morning, images data for 26 spectral channels with spectral bandwidth of 10 nm, which are from 450 nm to 700 nm, are acquired, the imaging quality is very fine. Firstly, LCVR are not assembled in our prototype system, and AOTF works in the sweeping frequency mode. The spectrum from each CCD proves that the diffraction efficiency of AOTF ± 1 order diffraction light is not completely the same, and the difference must be considered in polarized image processing. Then another experiment is done after LCVR has been assembled. The image data of the incident light of 600 nm are taken for example to discuss its all Stokes parameters in detail. The results show that the principle of the new technique is correct and the new scheme is feasible. This study provides a new theory and implementation scheme for the polarization spectral imaging technology.
    • 基金项目: 国家国际科技合作专项项目(批准号: 2013DFR1015)和国家自然科学基金(批准号: 61127015)资助的课题.
    • Funds: Project supported by the International Science and Technology Cooperation Special, China (Grant No. 2013DFR1015), and the National Natural Science Foundation of China (Grant Nos. 61127015),
    [1]

    Li J, Zhu J P, Qi C, Zheng C L, Gao B, Zhang Y Y, Hou X 2013 Acta Phys. Sin. 62 044206 (in Chinese) [李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵 2013 62 044206]

    [2]

    Mu T K, Zhang C M, Li Q W, Wei Y T, Chen Q Y, Jia C L 2014 Acta Phys. Sin. 63 110704 (in Chinese) [穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌 2014 63 110704]

    [3]

    Chen Y H, Wang Z B, Wang Z B, Zhang R, Wang Y C, Wang G J 2013 Acta Phys. Sin. 62 060702 (in Chinese) [陈友华, 王召巴, 王志斌, 张瑞, 王艳超, 王冠军 2013 62 060702]

    [4]

    Zhang C M, Ren W Y, Mu T K 2010 Chin. Phys. B 19 024202

    [5]

    Wu J F, Zhang C M 2010 Chin. Phys. B 19 034201

    [6]

    Hasekamp O P, Landgraf J 2007 Appl. Opt. 46 3332

    [7]

    Scharmer G B, Narayan G, Hillberg T 2008 Astrophys. J. 689 169

    [8]

    Nathan J P, Andrew R D, Michael J, Joseph A 2011 Opt. Express 19 18602

    [9]

    Zhao Y Q, Pan Q, Cheng Y M 2011 Imaging Spectro-polarimetric Remote Sensing and Application (Beijing: National Defense Industry Press) (in Chinese) [赵永强, 潘泉, 程咏梅 2011 成像偏振光谱遥感及应用 (北京:国防工业出版社)]

    [10]

    Zhang C M 2010 Interference Imaging Spectroscopy (Beijing: Science Press) pp17-32 (in Chinese) [张淳民 2010 干涉成像光谱技术 (北京:科学出版社)第17-32页]

    [11]

    Zhao H J, Zhou P W, Zhang Y, Cheng X, Xing H 2009 Infrared and Laser Engineering 38 189 (in Chinese) [赵慧洁, 周鹏威, 张颖, 程宣, 邢辉 2009 红外与激光工程 38 189]

    [12]

    Li K W, Wang Z B, Zhang R, Yu H 2015 Chin. J. Laser 42 0108001-1 (in Chinese) [李克武, 王志斌, 张瑞, 于慧 2015 中国激光 42 0108001-1]

    [13]

    Neelam G, Rachid D, Steve C 2002 Opt. Eng. 41 1033

    [14]

    Zhang Y, Zhao H J, Cheng X, Xiong S J 2011 Spectrosc. Spect. Anal. 31 1375 (in Chinese) [张颖, 赵慧洁, 程宣, 熊胜军 2011 光谱学与光谱分析 31 1375]

    [15]

    Neelam G 2014 Proc. SPIE 9099 90990N-1

    [16]

    Yu K X, Ding X H, Pang Z G 2011 Acousto Optic Principle and Acousto Optic Device (Beijing: Science Press) p257 (in Chinese) [俞宽新, 丁晓红, 庞兆广 2011 声光原理与声光器件 (北京:科学出版社)第257页]

    [17]

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p49 (in Chinese) [廖延彪 2003 偏振光学 (北京:科学出版社)第49页]

  • [1]

    Li J, Zhu J P, Qi C, Zheng C L, Gao B, Zhang Y Y, Hou X 2013 Acta Phys. Sin. 62 044206 (in Chinese) [李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵 2013 62 044206]

    [2]

    Mu T K, Zhang C M, Li Q W, Wei Y T, Chen Q Y, Jia C L 2014 Acta Phys. Sin. 63 110704 (in Chinese) [穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌 2014 63 110704]

    [3]

    Chen Y H, Wang Z B, Wang Z B, Zhang R, Wang Y C, Wang G J 2013 Acta Phys. Sin. 62 060702 (in Chinese) [陈友华, 王召巴, 王志斌, 张瑞, 王艳超, 王冠军 2013 62 060702]

    [4]

    Zhang C M, Ren W Y, Mu T K 2010 Chin. Phys. B 19 024202

    [5]

    Wu J F, Zhang C M 2010 Chin. Phys. B 19 034201

    [6]

    Hasekamp O P, Landgraf J 2007 Appl. Opt. 46 3332

    [7]

    Scharmer G B, Narayan G, Hillberg T 2008 Astrophys. J. 689 169

    [8]

    Nathan J P, Andrew R D, Michael J, Joseph A 2011 Opt. Express 19 18602

    [9]

    Zhao Y Q, Pan Q, Cheng Y M 2011 Imaging Spectro-polarimetric Remote Sensing and Application (Beijing: National Defense Industry Press) (in Chinese) [赵永强, 潘泉, 程咏梅 2011 成像偏振光谱遥感及应用 (北京:国防工业出版社)]

    [10]

    Zhang C M 2010 Interference Imaging Spectroscopy (Beijing: Science Press) pp17-32 (in Chinese) [张淳民 2010 干涉成像光谱技术 (北京:科学出版社)第17-32页]

    [11]

    Zhao H J, Zhou P W, Zhang Y, Cheng X, Xing H 2009 Infrared and Laser Engineering 38 189 (in Chinese) [赵慧洁, 周鹏威, 张颖, 程宣, 邢辉 2009 红外与激光工程 38 189]

    [12]

    Li K W, Wang Z B, Zhang R, Yu H 2015 Chin. J. Laser 42 0108001-1 (in Chinese) [李克武, 王志斌, 张瑞, 于慧 2015 中国激光 42 0108001-1]

    [13]

    Neelam G, Rachid D, Steve C 2002 Opt. Eng. 41 1033

    [14]

    Zhang Y, Zhao H J, Cheng X, Xiong S J 2011 Spectrosc. Spect. Anal. 31 1375 (in Chinese) [张颖, 赵慧洁, 程宣, 熊胜军 2011 光谱学与光谱分析 31 1375]

    [15]

    Neelam G 2014 Proc. SPIE 9099 90990N-1

    [16]

    Yu K X, Ding X H, Pang Z G 2011 Acousto Optic Principle and Acousto Optic Device (Beijing: Science Press) p257 (in Chinese) [俞宽新, 丁晓红, 庞兆广 2011 声光原理与声光器件 (北京:科学出版社)第257页]

    [17]

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p49 (in Chinese) [廖延彪 2003 偏振光学 (北京:科学出版社)第49页]

  • [1] 任立庆, 杨强, 姬超燃, 池娇, 胡云, 魏迎春, 许金友. 基于二次谐波产生光谱与显微成像的CdS纳米线空间取向研究.  , 2024, 73(16): 164207. doi: 10.7498/aps.73.20240753
    [2] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像.  , 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [3] 徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博. 基于Stokes矢量差分法的背景光偏振特性研究.  , 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [4] 霍永胜. 基于偏振的暗通道先验去雾.  , 2022, 71(14): 144202. doi: 10.7498/aps.71.20220332
    [5] 耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆. 色散对双晶交叉偏振滤波输出特性的影响.  , 2017, 66(4): 040601. doi: 10.7498/aps.66.040601
    [6] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究.  , 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [7] 管今哥, 朱京平, 田恒, 侯洵. 基于Stokes矢量的实时偏振差分水下成像研究.  , 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [8] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析.  , 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [9] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作.  , 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [10] 陈萍, 唐志列, 王娟, 付晓娣, 陈飞虎. 用Stokes参量法实现数字同轴偏振全息的研究.  , 2012, 61(10): 104202. doi: 10.7498/aps.61.104202
    [11] 徐凯, 杨艳芳, 何英, 韩小红, 李春芳. 局域椭圆偏振光束强聚焦性质的研究.  , 2010, 59(9): 6125-6130. doi: 10.7498/aps.59.6125
    [12] 赵洪英, 戴长建, 关锋. 钐原子的两步激发共振光电离光谱.  , 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [13] 李汉明, 李 钢, 李英骏, 李玉同, 张 翼, 程 涛, 聂超群, 张 杰. 绝缘阻挡放电等离子体发光光谱的特性.  , 2008, 57(2): 969-974. doi: 10.7498/aps.57.969
    [14] 简小华, 张淳民, 祝宝辉, 赵葆常, 杜 娟. 利用偏振干涉成像光谱仪进行偏振探测的新方法.  , 2008, 57(12): 7565-7570. doi: 10.7498/aps.57.7565
    [15] 郑国梁, 佘卫龙. 偏振方向对THz电光探测影响的理论研究.  , 2006, 55(3): 1061-1067. doi: 10.7498/aps.55.1061
    [16] 杨治虎, 张小安, 赵永涛, 殷纬纬, 李宁溪. 氧离子激发光谱的精密测量.  , 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [17] 周国泉. 任意线偏振高斯光束的非傍轴传输.  , 2005, 54(10): 4710-4717. doi: 10.7498/aps.54.4710
    [18] 何寿杰, 陈岐岱, 李雪辰, 艾希成, 张建平, 王 龙. 圆锥气泡声致发光光脉冲和光谱.  , 2005, 54(2): 977-981. doi: 10.7498/aps.54.977
    [19] 曾雄辉, 赵广军, 徐 军. 温度梯度法生长的Ce: YAlOZr3高温闪烁晶体的光谱分析.  , 2004, 53(6): 1935-1939. doi: 10.7498/aps.53.1935
    [20] 金 瑾, 陈 旸, 裴林森, 胡长进, 马兴孝, 陈从香. 射流冷却AlO自由基B2Σ+—X2Σ+光谱研究.  , 2000, 49(9): 1689-1691. doi: 10.7498/aps.49.1689
计量
  • 文章访问数:  7633
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-28
  • 修回日期:  2015-02-12
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map