搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干布居数拍频信号与基态超精细子能级相干性关系的研究

赵晓娜 庄煜昕 汪中

引用本文:
Citation:

相干布居数拍频信号与基态超精细子能级相干性关系的研究

赵晓娜, 庄煜昕, 汪中

Study on the relationship between coherent population beating signal and the coherence of ground-state hyperfine sublevels

Zhao Xiao-Na, Zhuang Yu-Xin, Wang Zhong
PDF
导出引用
  • 相干布居数拍频(coherent population beating, CPB)现象, 产生于一个型三能级原子系统中, 当双色相干激光场的频率差和两基态能级频率间隔近失谐的时候, 原子在激发态能级上的布居数会产生一个弛豫振荡, 且振荡频率等于失谐量. 当将此现象运用于原子标准频率的提取时, CPB频标的稳定度与CPB信号的幅度及信噪比直接相关. 本文理论推导了描述CPB 现象的表达式, 数值模拟并实验研究了87Rb基态超精细子能级的相干性对CPB信号的影响, 通过控制与基态子能级共振相干激光场的抽运时间来控制能级的相干程度, 观测不同相干程度对CPB信号质量的影响. 研究结果表明CPB信号振荡的幅度与基态子能级相干程度成正比关系. 要改善CPB信号信噪比、提高原子频标稳定度, 建立、提高和保持基态超精细能级的相干性是关键. 本文还讨论了CPB现象用于弱磁场测量及其他方面应用的可行性.
    Coherent population beating (CPB) phenomenon occurs in a typical three-level system. When the frequency difference between two coherent pumping laser fields has a certain detuning from the ground-state hyperfine splitting, the excited state population will experience a transient oscillation before reaching equilibrium, and the oscillation frequency is equal to the detuning. The CPB phenomenon enables us to directly obtain the beat frequency between the measured radio frequency (RF) signal and the atomic transition frequency. Then we can get the standard frequency by compensating the beat frequency to the RF. We propose a scheme to implement atomic clock based on the CPB phenomenon in 2009, and the scheme has been implemented. When this effect is used to achieve an atomic clock, the frequency stability is directly related to the amplitude and SNR (signal to noise ratio) of the CPB signal. Influence of the ground-state hyperfine sublevels' coherence on CPB signal is theoretically simulated and experimentally investigated in this paper. A formula of the CPB signal is derived by using the semi-classical model of the interaction of atoms with light, and the theoretical simulation is done using the formula obtained. In the experiment two coherent pumping laser fields are used to interact with 87Rb atoms. A CPB process includes the coherence build-up and the CPB stimulation. The coherence of the ground-state hyperfine sublevels is achieved by controlling the pumping time of the coherent laser fields that are resonant to the ground-state hyperfine sublevels. With this method, the relationship between CPB signal and coherence of the ground-state hyperfine sublevels can be observed. Result shows that the amplitude of CPB signal is proportional to the ground-state hyperfine sublevels' coherence. The hign quality CPB signal can be achieved when the CPB stimulation is started with a pure coherent population trapping (CPT) state. In the CPB process, the coherence build-up rate is approximately equal to the coherence decay rate. So a 50% duty cycle square wave can be used to modulate the RF, and the period of the square wave had better be twice of the decay time of the ground-state hyperfine sublevels' coherence. To improve the SNR of CPB signal and the stability of atomic frequency standard, the ground-state hyperfine sublevels' coherence must be built up, improved, and maintained before the CPB stimulation. The feasibility of applying CPB phenomenon to the weak magnetic field measurement and other applications is also discussed in this paper.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号:2013CB922401)和国家自然科学基金(批准号:11074012)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB922401), and the National Natural Science Foundation of China (Grant No. 11074012).
    [1]

    Vanier J 2005 Appl. Rhys. B 81 421

    [2]

    Wang Z 2014 Chin. Phys. B 23 030601

    [3]

    Gu S H, Behr J A 2003 Phys. Rev. A 68 015804

    [4]

    Park S J, Cho H 2004 Phys. Rev. A 69 023806

    [5]

    Guo T, Deng K, Chen X Z, Wang Z 2009 Appl. Phys. Lett. 94 151108

    [6]

    Li D W, Shi D T, Hu E M, Wang Y G, Tian L, Zhao J Y, Wang Z 2014 Appl. Phys. Express 7 112203

    [7]

    Wang Z, Zhao J Y, Wan M Y, Li Y Q, Shi D T, Hou D, Zhang S Y, Li D W 2013 European Frequency and Time Forum International Frequency Control Symposium (EFTF/IFC) Prague, July 21-25, 2013 p590

    [8]

    Shi D T, Li Y Q, Wang Z2013 European Frequency and Time Forum International Frequency Control Symposium (EFTF/IFC) Prague, July 21-25, 2013 p758

    [9]

    Wang Z, Guo T, Deng K, Chen X Z 2010 Proceedings of the 23rd International Frequency Control Symposium (FCS) Newport Beach, CA, June 1-4, 2010 p129

    [10]

    Vanier J, Godone A, Levi F 1998 Phys. Rev. A 58 2345

  • [1]

    Vanier J 2005 Appl. Rhys. B 81 421

    [2]

    Wang Z 2014 Chin. Phys. B 23 030601

    [3]

    Gu S H, Behr J A 2003 Phys. Rev. A 68 015804

    [4]

    Park S J, Cho H 2004 Phys. Rev. A 69 023806

    [5]

    Guo T, Deng K, Chen X Z, Wang Z 2009 Appl. Phys. Lett. 94 151108

    [6]

    Li D W, Shi D T, Hu E M, Wang Y G, Tian L, Zhao J Y, Wang Z 2014 Appl. Phys. Express 7 112203

    [7]

    Wang Z, Zhao J Y, Wan M Y, Li Y Q, Shi D T, Hou D, Zhang S Y, Li D W 2013 European Frequency and Time Forum International Frequency Control Symposium (EFTF/IFC) Prague, July 21-25, 2013 p590

    [8]

    Shi D T, Li Y Q, Wang Z2013 European Frequency and Time Forum International Frequency Control Symposium (EFTF/IFC) Prague, July 21-25, 2013 p758

    [9]

    Wang Z, Guo T, Deng K, Chen X Z 2010 Proceedings of the 23rd International Frequency Control Symposium (FCS) Newport Beach, CA, June 1-4, 2010 p129

    [10]

    Vanier J, Godone A, Levi F 1998 Phys. Rev. A 58 2345

  • [1] 韩艳晨, 李昱东, 李维. 相干布居囚禁振荡与拉曼失谐的关系.  , 2024, 73(2): 024203. doi: 10.7498/aps.73.20231408
    [2] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱.  , 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [3] 尹毅, 张奕, 谭伯仲, 陈杰华, 顾思洪. 芯片原子钟相干布居囚禁谱线特性研究.  , 2015, 64(3): 034207. doi: 10.7498/aps.64.034207
    [4] 张冰, 刘志学, 徐万超. 四能级双V型原子系统中考虑自发辐射相干的无粒子数反转激光.  , 2013, 62(16): 164207. doi: 10.7498/aps.62.164207
    [5] 喻松, 廖屏, 杨展予, 顾畹仪. 基于相干粒子数囚禁的电磁诱导光栅研究.  , 2013, 62(22): 224205. doi: 10.7498/aps.62.224205
    [6] 苏家妮, 邓文武, 李高翔. 四能级原子介质中Goos-Hnchen位移的相干控制.  , 2012, 61(14): 144210. doi: 10.7498/aps.61.144210
    [7] 于文健, 王继锁, 梁宝龙. 非线性相干态光场与二能级原子相互作用的量子特性.  , 2012, 61(6): 060301. doi: 10.7498/aps.61.060301
    [8] 刘智, 刁文婷, 王杰英, 梁强兵, 杨保东, 何军, 张天才, 王军民. 铯原子气室中相干布居俘获的参数依赖关系研究.  , 2012, 61(23): 233201. doi: 10.7498/aps.61.233201
    [9] 陈爱喜, 陈德海, 王志平. 级联型四能级原子相干介质中的光学双稳态和多稳态.  , 2009, 58(8): 5450-5454. doi: 10.7498/aps.58.5450
    [10] 杜润昌, 陈杰华, 刘朝阳, 顾思洪. CPT原子频标实验研究.  , 2009, 58(9): 6117-6121. doi: 10.7498/aps.58.6117
    [11] 毕冬艳. 一个特殊模型中的相干布居俘获.  , 2008, 57(8): 4685-4688. doi: 10.7498/aps.57.4685
    [12] 汪仲清, 段昌奎, 安广雷. 囚禁离子的非线性Jaynes-Cummings模型及其布居数反转演化.  , 2006, 55(7): 3438-3442. doi: 10.7498/aps.55.3438
    [13] 赵建明, 汪丽蓉, 赵延霆, 马 杰, 肖连团, 贾锁堂. 外加磁场对简并二能级原子系统相干特性的影响.  , 2005, 54(11): 5093-5097. doi: 10.7498/aps.54.5093
    [14] 周艳微, 叶存云, 林 强, 王育竹. 基于绝热快速通道控制原子布居数及其相干性的研究.  , 2005, 54(6): 2799-2803. doi: 10.7498/aps.54.2799
    [15] 谢 旻, 凌 琳, 杨国建. 非简并Λ型三能级原子的速度选择相干布居俘获.  , 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
    [16] 王立军, 余慧莺. 窄带激光与能级具有超精细结构的二能级原子的相干激发.  , 2004, 53(12): 4151-4156. doi: 10.7498/aps.53.4151
    [17] 王利强, 李永放, 曹冬梅, 毕冬艳, 张崇俊, 成延春. V型原子系统中相干布居俘获的相干相位调制研究 .  , 2004, 53(9): 2937-2942. doi: 10.7498/aps.53.2937
    [18] 龙德顺, 宁西京. 二能级系统的布居囚禁现象.  , 2001, 50(12): 2335-2340. doi: 10.7498/aps.50.2335
    [19] 韩立波, 田永红, 李高翔, 彭金生. 双模SU(1,1)猫态与级联三能级原子的粒子布居相干俘获.  , 2000, 49(4): 696-701. doi: 10.7498/aps.49.696
    [20] 初鑫钊, 刘淑琴, 董太乾. 铷原子频标中的微波功率频移.  , 1994, 43(7): 1072-1076. doi: 10.7498/aps.43.1072
计量
  • 文章访问数:  6310
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 修回日期:  2015-01-10
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map