搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锶玻色子的“魔术”波长光晶格装载实验研究

田晓 王叶兵 卢本全 刘辉 徐琴芳 任洁 尹默娟 孔德欢 常宏 张首刚

引用本文:
Citation:

锶玻色子的“魔术”波长光晶格装载实验研究

田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚

Experimental research on loading strontium bosons into the optical lattice operating at the “magic” wavelength

Tian Xiao, Wang Ye-Bing, Lu Ben-Quan, Liu Hui, Xu Qin-Fang, Ren Jie, Yin Mo-Juan, Kong De-Huan, Chang Hong, Zhang Shou-Gang
PDF
导出引用
  • 光晶格中性原子光钟的不确定度已达到10-18量级. 本文介绍了碱土金属锶原子玻色子88Sr在“魔术”波长处的一维光晶格装载, 实现冷锶原子的囚禁并使锶原子的钟跃迁能级(5s2) 1S0-(5s5p) 3P0在此波长处的交流斯塔克光频移一致. 实验中半导体激光器产生“魔术”光波长(813 nm), 通过实验搭建光学驻波场并获得晶格激光聚焦光束, 束腰半径为38 μm. 经过一级冷却和二级冷却后温度约为2 μK的冷锶原子被此“魔术”波长光晶格囚禁. 通过实验测量得到锶原子玻色子88Sr光晶格寿命为270 ms, 数目约为1.2×105, 温度在3.5 μK左右, 此外研究了晶格光功率对晶格囚禁原子数目及温度的影响作用. 原子的光晶格装载为后续的钟跃迁提供了长的探测时间, 为进一步的光钟闭环提供了实验基础.
    The optical lattice clock with neutral atoms occupies an outstanding position in the research field of atomic clocks, demonstrating the great potential of its performance (like the uncertainty and the stability). At present, the optical lattice clock has realized a 10-18 level of its uncertainty. In this paper, we present the realization of loading bosonic atoms 88Sr (strontium, alkaline-earth metals) into a one-dimensional (1D) optical lattice in our laboratory. The optical lattice where the atoms are trapped can make the energy level shift, called Stark shift. But there is the special optical lattice operating at the “magic” wavelength for clock transitions (5s2) 1S0-(5s5p) 3P0, which can make the same Stark light-shift for both of them, indicating a zero light-shift relative to the clock. In our experiment, Sr atoms are cooled in a two-stage cooling and its temperature can be as low as 2 μK. Then these cold atoms are confined in the Lamb-Dicke region by the lattice laser output from an amplified diode laser operating at the “magic” wavelength, 813 nm. Experimentally, it is straightforward to provide 850 mW of lattice power focused to a 38 μm beam radius. After the cold atoms have trapped in the optical lattice, the lifetime of atoms in 1D optical lattice is measured to be 270 ms. The temperature and the number are about 3.5 μK and 1.2×105 respectively. Besides, effects of the power of the lattice laser on both the number and temperature are analyzed. The number changes linearly with the laser power, while there is no obvious influence on the temperature by the power. This original and special approach for atoms trapped in the optical lattice can provide a long interrogation time for probing the clock transition. Furthermore, it may be the foundation for developing our optical lattice clock of strontium atoms.
    • 基金项目: 国家自然科学基金(批准号:61127901,11474282)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61127901, 11474282).
    [1]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [2]

    Madej A A, DubéP, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002

    [3]

    Margolis H S, Godun R M, Gill P, Johnson L A M, Shemar S L, Whibberley P B, Denker H, Timmen L, Voigt C, Calonico D, Levi F, Lorini L, Pizzocaro M, Falke S, Piester D, Lisdat C, Sterr U, Vogt S, Weyers S, Delva P, Bize S, Achkar J, Gersl J, Lindvall T, Merimaa M 2013 Joint UFFC, EFTF and PFM Symposium, Prague, Czech Republic, July 21-25, 2013 p908

    [4]

    Targat R L, Lorini L, Coq Y L, Zawada M, Guena J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nature Communications 4 2109

    [5]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenb T 2010 Phys. Rev. Lett. 104 70802

    [6]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321

    [7]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Masoudi A A, Höfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [8]

    Gurov M, McFerran J J, Nagórny B, Tyumenev R, Xu Z, Le Coq Y, Targat R L, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568

    [9]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates CW, Ludlow A D 2013 Science 341 1215

    [10]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [11]

    Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 013201

    [12]

    Lin Y G, Wang Q, Li Y, Lin B K, Wang S K, Meng F, Zhao Y, Cao J P, Zang E J, Li T C, Fang Z J 2013 Chin. Phys. Lett. 30 014206

    [13]

    Zhou M, Chen N, Zhang X H, Huang L Y, Yao M F, Tian J, Gao Q, Jiang H L, Tang H Y, Xu X Y 2013 Chin. Phys. B 22 103701

    [14]

    Wang S G, Zhang J W, Miao K, Wang Z B, Wang L J 2013 Chin. Phys. Lett. 30 013703

    [15]

    Xie X P, Zhuang W, Chen J B 2010 Chin. Phys. Lett. 27 074202

    [16]

    Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G, Wineland D J 1993 Phys. Rev. A 47 3554

    [17]

    Diddams S A, Bergquist J C, Jefferts S R, Oates C W 2004 Science 306 1318

    [18]

    Tian X, Chang H, Wang X L, Zhang S G 2010 Acta Opt. Sin. 30 898 (in Chinese) [田晓, 常宏, 王心亮, 张首刚 2010 光学学报 30 898]

    [19]

    Gao F 2014 Ph. D. Dissertation (Xian: University of Chinese Academy of Sciences, National Time Service Center) (in Chinese) [高峰 2014 博士学位论文(西安: 中国科学院大学, 国家授时中心)]

    [20]

    Wang Y B, Chen J, Tian X, Gao F, Chang H 2012 Acta Phys. Sin. 61 020601 (in Chinese) [王叶兵, 陈洁, 田晓, 高峰, 常宏 2012 61 020601]

    [21]

    Cong D L, Xu P, Wang Y B, Chang H 2013 Acta Phys. Sin. 62 153702 (in Chinese) [丛东亮, 许朋, 王叶兵, 常宏 2013 62 153702]

    [22]

    Black E D 2001 Am. J. Phys. 69 1

    [23]

    Takamoto M, Katori H, Marmo S I, Ovsiannikov V D, Pal'chikov V G 2009 Phys. Rev. Lett. 102 063002

    [24]

    Takamoto M, Katori H 2003 Phys. Rev. Lett. 91 223001

    [25]

    Lemond P, Wolf P 2005 Phys. Rev. A 72 033409

  • [1]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [2]

    Madej A A, DubéP, Zhou Z, Bernard J E, Gertsvolf M 2012 Phys. Rev. Lett. 109 203002

    [3]

    Margolis H S, Godun R M, Gill P, Johnson L A M, Shemar S L, Whibberley P B, Denker H, Timmen L, Voigt C, Calonico D, Levi F, Lorini L, Pizzocaro M, Falke S, Piester D, Lisdat C, Sterr U, Vogt S, Weyers S, Delva P, Bize S, Achkar J, Gersl J, Lindvall T, Merimaa M 2013 Joint UFFC, EFTF and PFM Symposium, Prague, Czech Republic, July 21-25, 2013 p908

    [4]

    Targat R L, Lorini L, Coq Y L, Zawada M, Guena J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nature Communications 4 2109

    [5]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenb T 2010 Phys. Rev. Lett. 104 70802

    [6]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321

    [7]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Masoudi A A, Höfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [8]

    Gurov M, McFerran J J, Nagórny B, Tyumenev R, Xu Z, Le Coq Y, Targat R L, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568

    [9]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates CW, Ludlow A D 2013 Science 341 1215

    [10]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [11]

    Liu Q, Huang Y, Cao J, Ou B Q, Guo B, Guan H, Huang X R, Gao K L 2011 Chin. Phys. Lett. 28 013201

    [12]

    Lin Y G, Wang Q, Li Y, Lin B K, Wang S K, Meng F, Zhao Y, Cao J P, Zang E J, Li T C, Fang Z J 2013 Chin. Phys. Lett. 30 014206

    [13]

    Zhou M, Chen N, Zhang X H, Huang L Y, Yao M F, Tian J, Gao Q, Jiang H L, Tang H Y, Xu X Y 2013 Chin. Phys. B 22 103701

    [14]

    Wang S G, Zhang J W, Miao K, Wang Z B, Wang L J 2013 Chin. Phys. Lett. 30 013703

    [15]

    Xie X P, Zhuang W, Chen J B 2010 Chin. Phys. Lett. 27 074202

    [16]

    Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G, Wineland D J 1993 Phys. Rev. A 47 3554

    [17]

    Diddams S A, Bergquist J C, Jefferts S R, Oates C W 2004 Science 306 1318

    [18]

    Tian X, Chang H, Wang X L, Zhang S G 2010 Acta Opt. Sin. 30 898 (in Chinese) [田晓, 常宏, 王心亮, 张首刚 2010 光学学报 30 898]

    [19]

    Gao F 2014 Ph. D. Dissertation (Xian: University of Chinese Academy of Sciences, National Time Service Center) (in Chinese) [高峰 2014 博士学位论文(西安: 中国科学院大学, 国家授时中心)]

    [20]

    Wang Y B, Chen J, Tian X, Gao F, Chang H 2012 Acta Phys. Sin. 61 020601 (in Chinese) [王叶兵, 陈洁, 田晓, 高峰, 常宏 2012 61 020601]

    [21]

    Cong D L, Xu P, Wang Y B, Chang H 2013 Acta Phys. Sin. 62 153702 (in Chinese) [丛东亮, 许朋, 王叶兵, 常宏 2013 62 153702]

    [22]

    Black E D 2001 Am. J. Phys. 69 1

    [23]

    Takamoto M, Katori H, Marmo S I, Ovsiannikov V D, Pal'chikov V G 2009 Phys. Rev. Lett. 102 063002

    [24]

    Takamoto M, Katori H 2003 Phys. Rev. Lett. 91 223001

    [25]

    Lemond P, Wolf P 2005 Phys. Rev. A 72 033409

  • [1] 王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖. 基于空间光调制器构建二维任意形状的87Rb原子阵列.  , 2023, 72(6): 064201. doi: 10.7498/aps.72.20222096
    [2] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测.  , 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [3] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟.  , 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [4] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量.  , 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [5] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现.  , 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [6] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发.  , 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [7] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量.  , 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [8] 李晓云, 孙博文, 许正倩, 陈静, 尹亚玲, 印建平. 基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究.  , 2018, 67(20): 203702. doi: 10.7498/aps.67.20181348
    [9] 林弋戈, 方占军. 锶原子光晶格钟.  , 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [10] 魏春华, 颜树华, 杨俊, 王国超, 贾爱爱, 罗玉昆, 胡青青. 基于87Rb原子的大失谐光晶格的设计与操控.  , 2017, 66(1): 010701. doi: 10.7498/aps.66.010701
    [11] 袁园, 芦小刚, 白金海, 李建军, 吴令安, 傅盘铭, 王如泉, 左战春. 多模1064nm光纤激光器实现一维远失谐光晶格.  , 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [12] 李艳. 从光晶格中释放的超冷玻色气体密度-密度关联函数研究.  , 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [13] 余学才, 汪平和, 张利勋. 光晶格动量依赖偶极势中原子运动.  , 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [14] 高峰, 王叶兵, 田晓, 许朋, 常宏. 锶原子三重态谱线的观测及在光钟中的应用.  , 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [15] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应.  , 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [16] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播.  , 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [17] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性.  , 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [18] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系.  , 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量.  , 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] 徐志君, 程 成, 杨欢耸, 武 强, 熊宏伟. 三维光晶格中玻色凝聚气体基态波函数及干涉演化.  , 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
计量
  • 文章访问数:  7384
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-31
  • 修回日期:  2015-02-01
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map