搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弱相干光源测量设备无关量子密钥分发系统的误码率分析

杜亚男 解文钟 金璇 王金东 魏正军 秦晓娟 赵峰 张智明

引用本文:
Citation:

基于弱相干光源测量设备无关量子密钥分发系统的误码率分析

杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明

Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states

Du Ya-Nan, Xie Wen-Zhong, Jin Xuan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming
PDF
导出引用
  • 测量设备无关量子密钥分发系统可以免疫任何针对探测器边信道的攻击, 并进一步结合诱惑态方法规避了准单光子源引入的实际安全性问题. 目前实验中一般采用弱相干光源, 但是该光源含有一定比例的空脉冲和多光子脉冲. 本文针对弱相干光源的具体特性, 采用量子力学的描述, 将各个器件进行量子化处理, 并同时考虑探测器的具体性能参数的影响, 分别给出了通信双方各自发送的脉冲含有特定光子数时产生的成功贝尔态和错误贝尔态的概率公式, 从理论上对相位编码和偏振编码测量设备无关量子密钥分发系统的误码率进行了定量分析, 分别推导并模拟了通信双方采用的平均光子数对称和不对称时误码率随传输距离的变化情况, 结果表明在偏振编码Z基中, 多光子脉冲不会引起误码; 在偏振编码X基和相位编码中, 受多光子影响, 产生的误码率较大. 对于不同的编码方式, 误码率均随传输距离的增加有不同程度的升高, 长距离传输时, 平均光子数越小, 产生的误码率越大; 在偏振编码X基和相位编码的短距离传输中, 相对于对称, 通信双方采用的平均光子数不对称时产生的误码率较大.
    A measurement-device-independent quantum key distribution (MDI-QKD) protocol is immune to all detection side-channel attacks and guarantees the information-theoretical security even with uncharacterized single photon detectors. A weak coherent source is used in the current MDI-QKD experiments, it inevitably contains a certain percentage of vacuum and multi-photon pulses. The security issues introduced by these source imperfections can be avoided by applying the decoy state method. Here, through modeling experimental devices, and taking into account the weak coherent source and the threshold detectors, we have evaluated the gain, the probability to get successful Bell measurement and incorrect Bell measurement, and the quantum bit error rate (QBER), given a practical setup. In our simulation, we show how QBER varies with different transmission distances in the cases when the average photon numbers per pulse from Alice and Bob are symmetric and asymmetric. Result shows that the multi-photon pulses do not cause error in the Z basis of polarization encoding scheme, but produce a large QBER in phase encoding scheme and in the X basis of polarization encoding scheme. QBER is affected by the dark count rate and the system optical error associated with the multi-photon pulses. For different encoding schemes, QBER caused by each kind of average photon numbers from Alice and Bob increases to different degrees with the transmission distance, and finally is close to 50%. With the increase of the transmission distance, the average photon number per pulse decreases and the fraction of the dark count rate causing QBER gradually increases. Under the same effect of the dark count rate, the smaller the average photon number per pulse, the bigger the QBER. After a certain transmission and at the same transmission distance, the QBER is largest when average photon numbers used by Alice and Bob are both smallest. For the short distance transmission of phase encoding scheme and the X basis, we find that QBER is larger when average photon numbers from the two arms are asymmetric, as compared to the symmetric case. For the Z basis, the QBER caused by the system optical error and the dark count rate is very small.
    • 基金项目: 国家自然科学基金(批准号:61378012,61401262,11374107)、国家自然科学基金重大研究计划(批准号:91121023)、国家重点基础研究发展计划(973计划)(批准号:2011CBA00200,2013CB921804)、教育部长江学者和创新团队发展计划(批准号:IRT1243)和高等学校博士学科点专项科研基金(批准号:20124407110009)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378012, 61401262, 11374107), the Major Research Plan of the National Natural Science Foundation of China(Grant No. 91121023), the National Basic Research Program of China (Grant Nos. 2011CBA00200, 2013CB921804), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1243), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009).
    [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [2]

    Li M, Patcharapong T, Zhang C M, Yin Z Q, Chen W, Han Z F 2015 Chin. Phys. B 24 010302

    [3]

    Ma H Q, Wei K J, Yang J H, Li R X, Zhu W 2014 Chin. Phys. B 23 100307

    [4]

    Chen W F, Wei Z J, Guo L, Hou L Y, Wang G, Wang J D, Zhang Z M, Guo J P, Liu S H 2014 Chin. Phys. B 23 080304

    [5]

    Zhou Y Y, Zhou X J, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305

    [6]

    Zhou R R, Y L 2012 Chin. Phys. B 21 080301

    [7]

    Lo H K, Chau H F 1999 Science 283 2050

    [8]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [9]

    Mayers D 2001 J. ACM 48 351

    [10]

    Makarov V, Anisimov A, Skaar J 2006 Phys. Rev. A 74 022313

    [11]

    Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333

    [12]

    Fung C H F, Qi B, Tamaki K, Lo H K 2007 Phys. Rev. A 75 032314

    [13]

    Jain N, Wittmann C, Lydersen L, Wiechers C, Elser D, Marquardt C, Makarov V, Leuchs G 2011 Phys. Rev. Lett. 107 110501

    [14]

    Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501

    [15]

    Gisin N, Pironio S, Sangouard N 2010 Phys. Rev. Lett. 105 070501

    [16]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503

    [17]

    Ma X, Razavi M 2012 Phys. Rev. A 86 062319

    [18]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X, Chen T Y, Zhang Q, Pan J W 2015 IEEE J. Select. Topics Quantum Electron. 21 6600407

    [19]

    Zhou C, Bao W S, Chen W, Li H W, Yin Z Q, Wang Y, Han Z F 2013 Phys. Rev. A 88 052333

    [20]

    Wang Y, Bao W S, Li H W, Zhou C, Li Y 2014 Chin. Phys. B 23 080303

    [21]

    Dong C, Zhao S H, Zhao W H, Shi L, Zhao G H 2014 Acta Phys. Sin. 63 030302 (in Chinese) [东晨, 赵尚弘, 赵卫虎, 石磊, 赵顾灏 2014 63 030302]

    [22]

    Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X, Pelc J S, Fejer M M, Peng C Z, Zhang Q, Pan J W 2013 Phys. Rev. Lett. 111 130502

    [23]

    da Silva T F, Vitoreti D, Xavier G B, do Amaral G C, Tempor o G P, von der Weid J P 2013 Phys. Rev. A 88 052303

    [24]

    Wang Q, Wang X B 2013 Phys. Rev. A 88 052332

    [25]

    Dong C, Zhao S H, Zhang N, Dong Y, Zhao W H, Liu Y 2014 Acta Phys. Sin. 63 200304 (in Chinese) [东晨, 赵尚弘, 张宁, 董毅, 赵卫虎, 刘韵 2014 63 200304]

    [26]

    Li M, Zhang C M, Yin Z Q, Chen W, Wang S, Guo G C, Han Z F 2014 Opt. Lett. 39 880

    [27]

    Ma X, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305

  • [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [2]

    Li M, Patcharapong T, Zhang C M, Yin Z Q, Chen W, Han Z F 2015 Chin. Phys. B 24 010302

    [3]

    Ma H Q, Wei K J, Yang J H, Li R X, Zhu W 2014 Chin. Phys. B 23 100307

    [4]

    Chen W F, Wei Z J, Guo L, Hou L Y, Wang G, Wang J D, Zhang Z M, Guo J P, Liu S H 2014 Chin. Phys. B 23 080304

    [5]

    Zhou Y Y, Zhou X J, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305

    [6]

    Zhou R R, Y L 2012 Chin. Phys. B 21 080301

    [7]

    Lo H K, Chau H F 1999 Science 283 2050

    [8]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [9]

    Mayers D 2001 J. ACM 48 351

    [10]

    Makarov V, Anisimov A, Skaar J 2006 Phys. Rev. A 74 022313

    [11]

    Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333

    [12]

    Fung C H F, Qi B, Tamaki K, Lo H K 2007 Phys. Rev. A 75 032314

    [13]

    Jain N, Wittmann C, Lydersen L, Wiechers C, Elser D, Marquardt C, Makarov V, Leuchs G 2011 Phys. Rev. Lett. 107 110501

    [14]

    Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501

    [15]

    Gisin N, Pironio S, Sangouard N 2010 Phys. Rev. Lett. 105 070501

    [16]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503

    [17]

    Ma X, Razavi M 2012 Phys. Rev. A 86 062319

    [18]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X, Chen T Y, Zhang Q, Pan J W 2015 IEEE J. Select. Topics Quantum Electron. 21 6600407

    [19]

    Zhou C, Bao W S, Chen W, Li H W, Yin Z Q, Wang Y, Han Z F 2013 Phys. Rev. A 88 052333

    [20]

    Wang Y, Bao W S, Li H W, Zhou C, Li Y 2014 Chin. Phys. B 23 080303

    [21]

    Dong C, Zhao S H, Zhao W H, Shi L, Zhao G H 2014 Acta Phys. Sin. 63 030302 (in Chinese) [东晨, 赵尚弘, 赵卫虎, 石磊, 赵顾灏 2014 63 030302]

    [22]

    Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X, Pelc J S, Fejer M M, Peng C Z, Zhang Q, Pan J W 2013 Phys. Rev. Lett. 111 130502

    [23]

    da Silva T F, Vitoreti D, Xavier G B, do Amaral G C, Tempor o G P, von der Weid J P 2013 Phys. Rev. A 88 052303

    [24]

    Wang Q, Wang X B 2013 Phys. Rev. A 88 052332

    [25]

    Dong C, Zhao S H, Zhang N, Dong Y, Zhao W H, Liu Y 2014 Acta Phys. Sin. 63 200304 (in Chinese) [东晨, 赵尚弘, 张宁, 董毅, 赵卫虎, 刘韵 2014 63 200304]

    [26]

    Li M, Zhang C M, Yin Z Q, Chen W, Wang S, Guo G C, Han Z F 2014 Opt. Lett. 39 880

    [27]

    Ma X, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305

  • [1] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发.  , 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [2] 周江平, 周媛媛, 周学军. 改进的测量设备无关协议参数优化方法.  , 2023, 72(12): 120303. doi: 10.7498/aps.72.20230179
    [3] 周阳, 马啸, 周星宇, 张春辉, 王琴. 实用化态制备误差容忍参考系无关量子密钥分发协议.  , 2023, 72(24): 240301. doi: 10.7498/aps.72.20231144
    [4] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 基于回归决策树的测量设备无关型量子密钥分发参数优化.  , 2023, 72(11): 110304. doi: 10.7498/aps.72.20230160
    [5] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用.  , 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [6] 杜聪, 王金东, 秦晓娟, 魏正军, 於亚飞, 张智明. 基于混合编码的测量设备无关量子密钥分发的简单协议.  , 2020, 69(19): 190301. doi: 10.7498/aps.69.20200162
    [7] 贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究.  , 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [8] 谷文苑, 赵尚弘, 东晨, 王星宇, 杨鼎. 参考系波动下的参考系无关测量设备无关量子密钥分发协议.  , 2019, 68(24): 240301. doi: 10.7498/aps.68.20191364
    [9] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究.  , 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [10] 孙伟, 尹华磊, 孙祥祥, 陈腾云. 基于相干叠加态的非正交编码诱骗态量子密钥分发.  , 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [11] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析.  , 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [12] 王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵. X射线通信系统的误码率分析.  , 2015, 64(12): 120701. doi: 10.7498/aps.64.120701
    [13] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究.  , 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [14] 魏正军, 万伟, 王金东, 廖常俊, 刘颂豪. 一种基于确定性量子密钥分发误码判据的相位调制器半波电压的精确测定方法.  , 2011, 60(9): 094216. doi: 10.7498/aps.60.094216.1
    [15] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响.  , 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [16] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案.  , 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [17] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究.  , 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [18] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统.  , 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [19] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发.  , 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [20] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发.  , 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
计量
  • 文章访问数:  6632
  • PDF下载量:  438
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-21
  • 修回日期:  2015-01-02
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map