搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Eu3+掺杂CaMoO4微米荧光粉发光性质的研究

赵聪 孟庆裕 孙文军

引用本文:
Citation:

Eu3+掺杂CaMoO4微米荧光粉发光性质的研究

赵聪, 孟庆裕, 孙文军

Luminescence properties of Eu3+ doped CaMoO4 micron phosphors

Zhao Cong, Meng Qing-Yu, Sun Wen-Jun
PDF
导出引用
  • 运用化学沉淀的方法合成了不同Eu3+掺杂浓度CaMoO4微米荧光粉样品, 详细研究了样品的光致发光性质. 研究表明: CaMoO4: Eu可以被蓝光或近紫外光有效激发, 实现高色纯度的红光发射; 样品的黄昆因子数值数量级为10-2, 是一种弱电声耦合材料; 样品中Eu3+的跃迁强度参数(Ω2)随着掺杂浓度的提高而增大, 但量子效率却随着掺杂浓度的提高而减小; 通过对样品发光的浓度猝灭曲线的分析, 确定Eu3+的理想掺杂浓度为25%, 并判断出Eu3+在CaMoO4基质中通过交换相互作用实现能量传递. 沉淀法制备的CaMoO4: Eu微米荧光粉具有发光色纯度好, 制备工艺简单, 耗时较少的优点, 是一种性能优异的红色荧光粉材料.
    Eu3+ doped CaMoO4 micron phosphors of different concentrations were prepared by chemical precipitation method. The photoluminescence properties were studied in detail. The X-ray diffraction measurements indicate that the samples are scheelite structure, and doping Eu3+ enlarge the lattice parameter of host material. The scanning electron microscope images show that the particle morphology is near-spherical and the size is 4-5 μm. The excitation and emission spectra of CaMoO4:Eu show that CaMoO4:Eu can be effectively excited by blue light and near UV-light, and the red light emission of high colour purity can be realized. The electron-phonon coupling properties were also studied. The results indicate that the magnitude of Huang-Rhys factor is 10-2, so the CaMoO4:Eu is a weak electron-phonon coupling material. The results also indicate that the Huang-Rhys factor increases with the increase of concentration. It is probably because that increasing the doping concentration enhances the lattice relaxation. The transition intensity parameter Ω2 of Eu3+ enlarges while the concentration is increasing. Because Ω2 and the luminescent center environment are closely related, the numerical value of Ω2 enlarges with the increase of degree of environmental disorder. But Ω4 doesn't have obvious change. It can be explained that the environmental sensitivity level of Eu3+5D0→7F2 transition is higher than that of 5D0→7F4 transition. The quantum efficiency of Eu3+ 5D0 energy level decreases with the increase of doping concentration. This can be attributed that the enhancement of Eu3+ doping concentration enlarges the energy transfer rate between luminescent centers, so the energy of excited electrons can be transferred to quenching center more easily and then the nonradiative relaxation rate of excited electrons increases. The best doping concentration of Eu3+ is 25% by drawing the concentration quenching curve. Furthermore, the energy transfer type of Eu3+ in CaMoO4 host is confirmed to be exchange interaction and the critical distance is calculated to be 8.4 Å. The chromaticity coordinate of CaMoO4:Eu phosphors is (0.654, 0.334), so the samples have high colour purity. The study indicates that CaMoO4:Eu micron phosphor prepared by chemical precipitation method is a red phosphor material with excellent property.
    • 基金项目: 国家自然科学基金 (批准号: 51002041)、黑龙江省自然科学基金(批准号: F201202)和黑龙江省普通高等学校青年学术骨干支持计划 (批准号: 1252G032)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51002041), the Natural Science Foundation of Heilongjiang Province of China (Grant No. F201202), and the Foundation for Young Key Scholars of Higher Education Institution of Heilongjiang Province, China (Grant No. 1252G032).
    [1]

    Tian Y, Chen B J, Hua R N, Sun J S, Chen L H, Li X P, Zhang J S, Zheng Y F, Yu T T, Huang L B, Yu H Q 2011 J. Appl. Phys. 109 053511

    [2]

    Yan S X, Zhang J H, Zhang X, Lu S Z, Ren X G, Nie Z G, Wang X J 2007 J. Phys. Chem. C 111 13256

    [3]

    Tang H X, L S C 2011 Acta Phys. Sin. 60 037805 (in Chinese) [唐红霞, 吕树臣 2011 60 037805]

    [4]

    Hu Y S, Zhuang W D, Ye H Q, Wang D H, Zhang S S, Huang X W 2005 J. Alloys Compds. 390 226

    [5]

    Wang J G, Jing X P, Yan C H, Lin J H, Liao F H 2005 J. Electrochem. Soc. 152 534

    [6]

    Zhao X X, Wang X J, Chen B J, Meng Q Y, Yan B, Di W H 2007 Spectrosc. Spect. Anal. 27 629 (in Chinese) [赵晓霞, 王晓君, 陈宝玖, 孟庆裕, 颜斌, 狄卫华 2007 光谱学与光谱分析 27 629]

    [7]

    Gao F, Liang L F, Guo C F 2009 Chin. J. Lumin. 30 179 (in Chinese) [高飞, 梁利芳, 郭崇峰 2009 发光学报 30 610]

    [8]

    Zhao X X, Wang X J, Chen B J, Meng Q Y. Di W H, Ren G Z, Yang Y M 2007 J. Alloys Compd. 433 352

    [9]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万唯龙, 孙江亭 2012 61 107804]

    [10]

    Sun L N, Meng Q Y, Feng X H, Zuo L, Yu C H, Ma L 2011 Spectrosc. Spect. Anal. 31 3218 (in Chinese) [孙立男, 孟庆裕, 冯晓辉, 左琳, 于臣海, 马丽 2011 光谱学与光谱分析 31 3218]

    [11]

    Liu J, Lian H Z, Shi C S 2007 Opt. Mater. 29 1591

    [12]

    Jin Y, Zhang J H, Hao Z D, Zhang X, Wang X J 2011 J. Alloys Compds. 509 348

    [13]

    Kang F W, Hu Y H, Wu H Y, Ju G F, Mu Z F, Li N N 2011 Journal of Rare Earths 29 837

    [14]

    Anees A A, Parchur A K, Manawwer A, Abdallah A 2014 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131 30

    [15]

    Wang X F, Peng G H, Li N, Liang Z H, Wang X, Wu J L 2014 J. Alloys Compds. 599 102

    [16]

    He C, Guan Y F, Yao L Z, Cai W L, Li X G, Yao Z 2003 Mater. Res. Bull. 38 973

    [17]

    Di W H, Wang X J, Chen B J, Lu S Z, Zhao X X 2005 J. Phys. Chem. B 109 13154

    [18]

    Jiang B X, Huang T D, Wu Y S, Liu W B, Pan Y B, Feng T, Yang Q H 2008 Chin. Phys. B 17 3407

    [19]

    Yi J, Qiu J B, Wang Y A, Zhou D C 2014 Chin. Phys. B 23 104224

    [20]

    Singh N S, Singh S D, Meetei S D 2014 Chin. Phys. B 23 058104

    [21]

    Zhao X X, Wang X J, Chen B J, Meng Q Y, Yan B, Di W H 2007 Opt. Mater. 29 1680

    [22]

    Chen B J, Wang H Y, Huang S H 2001 Chin. J. Lumin. 22 253 (in Chinese) [陈宝玖, 王海宇, 黄世华 2001 发光学报 22 253]

    [23]

    Meng Q Y, Liu Z X, Sun W J 2013 Acta Phys. Sin. 62 097801 (in Chinese) [孟庆裕, 刘志鑫, 孙文军 2013 62 097801]

    [24]

    Tian Y, Qi X H, Wu X W, Hua R N, Chen B J 2009 J. Phys. Chem. C 113 10767

    [25]

    Soga K, Inoue H, Makishima A, Inoue S 1993 J. Lumin. 55 17

    [26]

    Judd B R 1962 Phys. Rev. 127 750

    [27]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [28]

    Ray S, Pramanik P, Singha A, Roy A 2005 J. Appl. Phys. 97 094312

    [29]

    Nishimura G, Kushida T 1988 Phys. Rev. B 37 9075

    [30]

    Reisfeld R, Greenberg E, Brown R N, Drexhage M G, Jorgensen C K 1983 Chem. Phys. Lett. 95 91

    [31]

    Huang S H, Lou L R 1990 Chin. J. Lumin. 11 1 (in Chinese) [黄世华, 楼立人 1990 发光学报 11 1]

    [32]

    Blasse G 1986 J. Solid State Chem. 62 207

  • [1]

    Tian Y, Chen B J, Hua R N, Sun J S, Chen L H, Li X P, Zhang J S, Zheng Y F, Yu T T, Huang L B, Yu H Q 2011 J. Appl. Phys. 109 053511

    [2]

    Yan S X, Zhang J H, Zhang X, Lu S Z, Ren X G, Nie Z G, Wang X J 2007 J. Phys. Chem. C 111 13256

    [3]

    Tang H X, L S C 2011 Acta Phys. Sin. 60 037805 (in Chinese) [唐红霞, 吕树臣 2011 60 037805]

    [4]

    Hu Y S, Zhuang W D, Ye H Q, Wang D H, Zhang S S, Huang X W 2005 J. Alloys Compds. 390 226

    [5]

    Wang J G, Jing X P, Yan C H, Lin J H, Liao F H 2005 J. Electrochem. Soc. 152 534

    [6]

    Zhao X X, Wang X J, Chen B J, Meng Q Y, Yan B, Di W H 2007 Spectrosc. Spect. Anal. 27 629 (in Chinese) [赵晓霞, 王晓君, 陈宝玖, 孟庆裕, 颜斌, 狄卫华 2007 光谱学与光谱分析 27 629]

    [7]

    Gao F, Liang L F, Guo C F 2009 Chin. J. Lumin. 30 179 (in Chinese) [高飞, 梁利芳, 郭崇峰 2009 发光学报 30 610]

    [8]

    Zhao X X, Wang X J, Chen B J, Meng Q Y. Di W H, Ren G Z, Yang Y M 2007 J. Alloys Compd. 433 352

    [9]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万唯龙, 孙江亭 2012 61 107804]

    [10]

    Sun L N, Meng Q Y, Feng X H, Zuo L, Yu C H, Ma L 2011 Spectrosc. Spect. Anal. 31 3218 (in Chinese) [孙立男, 孟庆裕, 冯晓辉, 左琳, 于臣海, 马丽 2011 光谱学与光谱分析 31 3218]

    [11]

    Liu J, Lian H Z, Shi C S 2007 Opt. Mater. 29 1591

    [12]

    Jin Y, Zhang J H, Hao Z D, Zhang X, Wang X J 2011 J. Alloys Compds. 509 348

    [13]

    Kang F W, Hu Y H, Wu H Y, Ju G F, Mu Z F, Li N N 2011 Journal of Rare Earths 29 837

    [14]

    Anees A A, Parchur A K, Manawwer A, Abdallah A 2014 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131 30

    [15]

    Wang X F, Peng G H, Li N, Liang Z H, Wang X, Wu J L 2014 J. Alloys Compds. 599 102

    [16]

    He C, Guan Y F, Yao L Z, Cai W L, Li X G, Yao Z 2003 Mater. Res. Bull. 38 973

    [17]

    Di W H, Wang X J, Chen B J, Lu S Z, Zhao X X 2005 J. Phys. Chem. B 109 13154

    [18]

    Jiang B X, Huang T D, Wu Y S, Liu W B, Pan Y B, Feng T, Yang Q H 2008 Chin. Phys. B 17 3407

    [19]

    Yi J, Qiu J B, Wang Y A, Zhou D C 2014 Chin. Phys. B 23 104224

    [20]

    Singh N S, Singh S D, Meetei S D 2014 Chin. Phys. B 23 058104

    [21]

    Zhao X X, Wang X J, Chen B J, Meng Q Y, Yan B, Di W H 2007 Opt. Mater. 29 1680

    [22]

    Chen B J, Wang H Y, Huang S H 2001 Chin. J. Lumin. 22 253 (in Chinese) [陈宝玖, 王海宇, 黄世华 2001 发光学报 22 253]

    [23]

    Meng Q Y, Liu Z X, Sun W J 2013 Acta Phys. Sin. 62 097801 (in Chinese) [孟庆裕, 刘志鑫, 孙文军 2013 62 097801]

    [24]

    Tian Y, Qi X H, Wu X W, Hua R N, Chen B J 2009 J. Phys. Chem. C 113 10767

    [25]

    Soga K, Inoue H, Makishima A, Inoue S 1993 J. Lumin. 55 17

    [26]

    Judd B R 1962 Phys. Rev. 127 750

    [27]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [28]

    Ray S, Pramanik P, Singha A, Roy A 2005 J. Appl. Phys. 97 094312

    [29]

    Nishimura G, Kushida T 1988 Phys. Rev. B 37 9075

    [30]

    Reisfeld R, Greenberg E, Brown R N, Drexhage M G, Jorgensen C K 1983 Chem. Phys. Lett. 95 91

    [31]

    Huang S H, Lou L R 1990 Chin. J. Lumin. 11 1 (in Chinese) [黄世华, 楼立人 1990 发光学报 11 1]

    [32]

    Blasse G 1986 J. Solid State Chem. 62 207

  • [1] 苏小娜, 万英, 周芷萱, 吐沙姑·阿不都吾甫, 胡莲莲, 艾尔肯·斯地克. Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递.  , 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [2] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究.  , 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [3] 叶松, 王向贤, 侯宜栋, 张志友, 杜惊雷. 自组装银膜增强8-羟基喹啉铝(Alq3)光致发光的实验和理论研究.  , 2014, 63(8): 087802. doi: 10.7498/aps.63.087802
    [4] 汪冬冬, 高辉. 三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究.  , 2013, 62(18): 188102. doi: 10.7498/aps.62.188102
    [5] 孟庆裕, 刘志鑫, 孙文军. Gd2(WO4)3: Eu纳米发光材料中黄昆因子和能量传递速率的实验获得.  , 2013, 62(9): 097801. doi: 10.7498/aps.62.097801
    [6] 李海玲, 王银海, 张万鑫, 王显盛, 赵慧. Eu3+掺杂CaO的合成与红色长余辉发光性能研究.  , 2012, 61(22): 227802. doi: 10.7498/aps.61.227802
    [7] 孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭. Eu3+掺杂CaWO4红色荧光粉发光性质的浓度依赖关系研究.  , 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [8] 张益军, 牛军, 赵静, 邹继军, 常本康. 指数掺杂结构对透射式GaAs光电阴极量子效率的影响研究.  , 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [9] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭. 高性能透射式GaAs光电阴极量子效率拟合与结构研究.  , 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [10] 乔建良, 常本康, 钱芸生, 杜晓晴, 王晓晖, 郭向阳. 反射式NEA GaN光电阴极量子效率恢复研究.  , 2011, 60(1): 017903. doi: 10.7498/aps.60.017903
    [11] 冯晓辉, 孟庆裕, 孙江亭, 吕树臣, 孙立男. Eu3+掺杂Gd2W2O9和Gd2(WO4)3纳米荧光粉发光性质研究.  , 2011, 60(3): 037806. doi: 10.7498/aps.60.037806
    [12] 乔建良, 常本康, 杜晓晴, 牛军, 邹继军. 反射式负电子亲和势GaN光电阴极量子效率衰减机理研究.  , 2010, 59(4): 2855-2859. doi: 10.7498/aps.59.2855
    [13] 邓懿, 赵德刚, 吴亮亮, 刘宗顺, 朱建军, 江德生, 张书明, 梁骏吾. 器件参数对GaN基n+-GaN/i-Alx Ga1-xN/n+-GaN结构紫外和红外双色探测器中紫外响应的影响.  , 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [14] 徐伟, 李成仁, 陈宝玖, 冯志庆. Eu3+作探针研究铋铕共掺硼硅酸盐玻璃光学特性.  , 2010, 59(2): 1328-1332. doi: 10.7498/aps.59.1328
    [15] 牛军, 杨智, 常本康, 乔建良, 张益军. 反射式变掺杂GaAs光电阴极量子效率模型研究.  , 2009, 58(7): 5002-5006. doi: 10.7498/aps.58.5002
    [16] 杜晓晴, 常本康. 负电子亲和势光电阴极量子效率公式的修正.  , 2009, 58(12): 8643-8650. doi: 10.7498/aps.58.8643
    [17] 邹继军, 常本康, 杨 智. 指数掺杂GaAs光电阴极量子效率的理论计算.  , 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [18] 刘春旭, 张家骅, 吕少哲, 刘俊业. 纳米Gd2O3:Eu3+中Judd-Ofelt参数的实验确定.  , 2004, 53(11): 3945-3949. doi: 10.7498/aps.53.3945
    [19] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性.  , 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [20] 常君弢, 吴令安. 单光子探测器量子效率的绝对自身标定方法.  , 2003, 52(5): 1132-1136. doi: 10.7498/aps.52.1132
计量
  • 文章访问数:  6820
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-13
  • 修回日期:  2015-03-12
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map