-
采用共沉淀法制备了不同Eu3+掺杂浓度的Gd2(WO4)3纳米发光材料. 测量了纳米材料样品的X射线衍射谱(XRD) 和场发射扫描电镜, 对样品的结构和形貌进行了表征. 测量了各样品的发射光谱和激发光谱(声子边带光谱), 绘制了浓度猝灭曲线, 确定了最佳的掺杂浓度为20 mol%. 通过声子边带光谱计算了不同掺杂浓度样品的黄昆因子. 测量了不同浓度样品的荧光寿命, 利用Auzel模型对Eu3+ 5D0能级荧光寿命数据进行了拟合, 确定了5D0能级的固有寿命和猝灭过程中生成的声子数. 本文还根据荧光寿命数据计算了Eu3+之间的能量传递速率, 确定了能量传递速率与浓度的关系.In this paper, Gd2(WO4)3:Eu nanophosphors with different Eu3+ concentrations were synthesized through co-precipitation. The crystal structure and morphology of the nanophosphors were characterized by means of XRD and field emission scanning electron microscopy. Emission and excitation spectra (phonon sideband spectra) of each sample were measured, and concentration quenching curves were also drawn. The optimal doping concentration was confirmed to be 20 mol%. Huang-Rhys factor for each sample of different doping concentration was calculated by the phonon sideband spectra. Fluorescence lifetimes of the samples with different Eu3+ doping concentrations were measured. By fitting the fluorescence lifetime data of Eu3+ 5D0 level within the Auzel's model, the intrinsic lifetime for 5D0 level was determined and the generated phonon number in the quenching process was measured. The energy transfer rate of Eu3+ was derived from the fluorescence lifetime data, and the relationship between the energy transfer rate and the concentration was also given.
-
Keywords:
- tungstate /
- Eu3+ /
- Huang-Rhys factor /
- energy transfer rate
[1] Tanabe S, Hayashi H, Hanada T, Onodera N 2002 Opt. Mater. 19 343
[2] Gilliland G D, Powell R C, Esterowitz L 1988 Phys. Rev. B 38 9958
[3] Chen B, Jang K, Lee H, Jayasimhadri M, Cho E, Yi S, Jeong J 2009 J. Phys. D: Appl. Phys. 42 105401
[4] Wang X Y, Lin H, Yang D L, Lin L, Pun E Y B 2007 J. Appl. Phys. 101 113535
[5] Tian Y, Chen B J, Hua R N, Sun J S, Chen L H, Zhong H Y, Li X P, Zhang J S, Zheng Y F, Yu T T, Huang L B, Yu H Q 2011 J. Appl. Phys. 109 053511
[6] Wakefield G, Holland E, Dobson P J, Hutchison J L 2001 Adv. Mater.13 1557
[7] Palilla F C, Levine A K 1996 Appl. Opt. 5 1467
[8] Jia P Y, Liu S M, Yu M, Luo Y, Fang J, Lin J 2006 Chem. Phys. Lett. 428 358
[9] Su Y G, Li L P, Li G S 2009 J. Mate. Chem. 19 2316
[10] Tang H X, Lü S C 2011 Acta Phys. Sin. 60 037805 (in Chinese) [唐红霞, 吕树臣 2011 60 037805]
[11] Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 61 107804]
[12] Ren Y D, Lü S C 2011 Acta Phys. Sin. 60 087804 (in Chinese) [任艳东, 吕树臣 2011 60 087804]
[13] Di W H, Wang X J, Chen B J, Lu S Z, Zhao X X 2005 J. Phys. Chem. B 109 13154
[14] He C, Guan Y F, Yao L Z, Cai W L, Li X G, Yao Z 2003 Mater. Res. Bull. 38 973
[15] Huang Y H, Jiang D L, Zhang J X, Lin Q L 2010 Acta Phys. Sin. 59 300 (in Chinese) [黄毅华, 江东亮, 张景贤, 林庆玲 2010 59 300]
[16] Jiang B X, Huang T D, Wu Y S, Liu W B, Pan Y B, Feng T, Yang Q H 2008 Chin. Phys. B 17 3407
[17] Meng Q Y, Hua R N, Chen B J, Tian Y, Lu S C, Sun L N 2011 J. Nanosci Nanotechnol 11 182
[18] Chen B J, Wang H Y, Huang S H 2001 Chin. J. Lumin. 22 253 (in Chinese) [陈宝玖, 王海宇, 黄世华 2001 发光学报 22 253]
[19] Tian Y, Qi X H, Wu X W, Hua R N, Chen B J 2009 J. Phys. Chem. C 113 10767
[20] Soga K, Inoue H, Makishima A, Inoue S 1993 J. Lumin. 55 17
[21] Auzel F 2002 J Lumin 100 125
-
[1] Tanabe S, Hayashi H, Hanada T, Onodera N 2002 Opt. Mater. 19 343
[2] Gilliland G D, Powell R C, Esterowitz L 1988 Phys. Rev. B 38 9958
[3] Chen B, Jang K, Lee H, Jayasimhadri M, Cho E, Yi S, Jeong J 2009 J. Phys. D: Appl. Phys. 42 105401
[4] Wang X Y, Lin H, Yang D L, Lin L, Pun E Y B 2007 J. Appl. Phys. 101 113535
[5] Tian Y, Chen B J, Hua R N, Sun J S, Chen L H, Zhong H Y, Li X P, Zhang J S, Zheng Y F, Yu T T, Huang L B, Yu H Q 2011 J. Appl. Phys. 109 053511
[6] Wakefield G, Holland E, Dobson P J, Hutchison J L 2001 Adv. Mater.13 1557
[7] Palilla F C, Levine A K 1996 Appl. Opt. 5 1467
[8] Jia P Y, Liu S M, Yu M, Luo Y, Fang J, Lin J 2006 Chem. Phys. Lett. 428 358
[9] Su Y G, Li L P, Li G S 2009 J. Mate. Chem. 19 2316
[10] Tang H X, Lü S C 2011 Acta Phys. Sin. 60 037805 (in Chinese) [唐红霞, 吕树臣 2011 60 037805]
[11] Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 61 107804]
[12] Ren Y D, Lü S C 2011 Acta Phys. Sin. 60 087804 (in Chinese) [任艳东, 吕树臣 2011 60 087804]
[13] Di W H, Wang X J, Chen B J, Lu S Z, Zhao X X 2005 J. Phys. Chem. B 109 13154
[14] He C, Guan Y F, Yao L Z, Cai W L, Li X G, Yao Z 2003 Mater. Res. Bull. 38 973
[15] Huang Y H, Jiang D L, Zhang J X, Lin Q L 2010 Acta Phys. Sin. 59 300 (in Chinese) [黄毅华, 江东亮, 张景贤, 林庆玲 2010 59 300]
[16] Jiang B X, Huang T D, Wu Y S, Liu W B, Pan Y B, Feng T, Yang Q H 2008 Chin. Phys. B 17 3407
[17] Meng Q Y, Hua R N, Chen B J, Tian Y, Lu S C, Sun L N 2011 J. Nanosci Nanotechnol 11 182
[18] Chen B J, Wang H Y, Huang S H 2001 Chin. J. Lumin. 22 253 (in Chinese) [陈宝玖, 王海宇, 黄世华 2001 发光学报 22 253]
[19] Tian Y, Qi X H, Wu X W, Hua R N, Chen B J 2009 J. Phys. Chem. C 113 10767
[20] Soga K, Inoue H, Makishima A, Inoue S 1993 J. Lumin. 55 17
[21] Auzel F 2002 J Lumin 100 125
计量
- 文章访问数: 7976
- PDF下载量: 691
- 被引次数: 0