搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gd2(WO4)3: Eu纳米发光材料中黄昆因子和能量传递速率的实验获得

孟庆裕 刘志鑫 孙文军

引用本文:
Citation:

Gd2(WO4)3: Eu纳米发光材料中黄昆因子和能量传递速率的实验获得

孟庆裕, 刘志鑫, 孙文军

The experiments for obtaining Huang-Rhys factor and energy transfer rate of Gd2(WO4)3:Eu nanophosphor

Meng Qing-Yu, Liu Zhi-Xin, Sun Wen-Jun
PDF
导出引用
  • 采用共沉淀法制备了不同Eu3+掺杂浓度的Gd2(WO4)3纳米发光材料. 测量了纳米材料样品的X射线衍射谱(XRD) 和场发射扫描电镜, 对样品的结构和形貌进行了表征. 测量了各样品的发射光谱和激发光谱(声子边带光谱), 绘制了浓度猝灭曲线, 确定了最佳的掺杂浓度为20 mol%. 通过声子边带光谱计算了不同掺杂浓度样品的黄昆因子. 测量了不同浓度样品的荧光寿命, 利用Auzel模型对Eu3+ 5D0能级荧光寿命数据进行了拟合, 确定了5D0能级的固有寿命和猝灭过程中生成的声子数. 本文还根据荧光寿命数据计算了Eu3+之间的能量传递速率, 确定了能量传递速率与浓度的关系.
    In this paper, Gd2(WO4)3:Eu nanophosphors with different Eu3+ concentrations were synthesized through co-precipitation. The crystal structure and morphology of the nanophosphors were characterized by means of XRD and field emission scanning electron microscopy. Emission and excitation spectra (phonon sideband spectra) of each sample were measured, and concentration quenching curves were also drawn. The optimal doping concentration was confirmed to be 20 mol%. Huang-Rhys factor for each sample of different doping concentration was calculated by the phonon sideband spectra. Fluorescence lifetimes of the samples with different Eu3+ doping concentrations were measured. By fitting the fluorescence lifetime data of Eu3+ 5D0 level within the Auzel's model, the intrinsic lifetime for 5D0 level was determined and the generated phonon number in the quenching process was measured. The energy transfer rate of Eu3+ was derived from the fluorescence lifetime data, and the relationship between the energy transfer rate and the concentration was also given.
    • 基金项目: 黑龙江省普通高等学校青年学术骨干支持计划项目(批准号:1252G032)资助的课题.
    • Funds: Project supported by the Foundation for Young Key Scholars of Higher Education Institution of Heilongjiang Province, China (Grant No. 1252G032).
    [1]

    Tanabe S, Hayashi H, Hanada T, Onodera N 2002 Opt. Mater. 19 343

    [2]

    Gilliland G D, Powell R C, Esterowitz L 1988 Phys. Rev. B 38 9958

    [3]

    Chen B, Jang K, Lee H, Jayasimhadri M, Cho E, Yi S, Jeong J 2009 J. Phys. D: Appl. Phys. 42 105401

    [4]

    Wang X Y, Lin H, Yang D L, Lin L, Pun E Y B 2007 J. Appl. Phys. 101 113535

    [5]

    Tian Y, Chen B J, Hua R N, Sun J S, Chen L H, Zhong H Y, Li X P, Zhang J S, Zheng Y F, Yu T T, Huang L B, Yu H Q 2011 J. Appl. Phys. 109 053511

    [6]

    Wakefield G, Holland E, Dobson P J, Hutchison J L 2001 Adv. Mater.13 1557

    [7]

    Palilla F C, Levine A K 1996 Appl. Opt. 5 1467

    [8]

    Jia P Y, Liu S M, Yu M, Luo Y, Fang J, Lin J 2006 Chem. Phys. Lett. 428 358

    [9]

    Su Y G, Li L P, Li G S 2009 J. Mate. Chem. 19 2316

    [10]

    Tang H X, Lü S C 2011 Acta Phys. Sin. 60 037805 (in Chinese) [唐红霞, 吕树臣 2011 60 037805]

    [11]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 61 107804]

    [12]

    Ren Y D, Lü S C 2011 Acta Phys. Sin. 60 087804 (in Chinese) [任艳东, 吕树臣 2011 60 087804]

    [13]

    Di W H, Wang X J, Chen B J, Lu S Z, Zhao X X 2005 J. Phys. Chem. B 109 13154

    [14]

    He C, Guan Y F, Yao L Z, Cai W L, Li X G, Yao Z 2003 Mater. Res. Bull. 38 973

    [15]

    Huang Y H, Jiang D L, Zhang J X, Lin Q L 2010 Acta Phys. Sin. 59 300 (in Chinese) [黄毅华, 江东亮, 张景贤, 林庆玲 2010 59 300]

    [16]

    Jiang B X, Huang T D, Wu Y S, Liu W B, Pan Y B, Feng T, Yang Q H 2008 Chin. Phys. B 17 3407

    [17]

    Meng Q Y, Hua R N, Chen B J, Tian Y, Lu S C, Sun L N 2011 J. Nanosci Nanotechnol 11 182

    [18]

    Chen B J, Wang H Y, Huang S H 2001 Chin. J. Lumin. 22 253 (in Chinese) [陈宝玖, 王海宇, 黄世华 2001 发光学报 22 253]

    [19]

    Tian Y, Qi X H, Wu X W, Hua R N, Chen B J 2009 J. Phys. Chem. C 113 10767

    [20]

    Soga K, Inoue H, Makishima A, Inoue S 1993 J. Lumin. 55 17

    [21]

    Auzel F 2002 J Lumin 100 125

  • [1]

    Tanabe S, Hayashi H, Hanada T, Onodera N 2002 Opt. Mater. 19 343

    [2]

    Gilliland G D, Powell R C, Esterowitz L 1988 Phys. Rev. B 38 9958

    [3]

    Chen B, Jang K, Lee H, Jayasimhadri M, Cho E, Yi S, Jeong J 2009 J. Phys. D: Appl. Phys. 42 105401

    [4]

    Wang X Y, Lin H, Yang D L, Lin L, Pun E Y B 2007 J. Appl. Phys. 101 113535

    [5]

    Tian Y, Chen B J, Hua R N, Sun J S, Chen L H, Zhong H Y, Li X P, Zhang J S, Zheng Y F, Yu T T, Huang L B, Yu H Q 2011 J. Appl. Phys. 109 053511

    [6]

    Wakefield G, Holland E, Dobson P J, Hutchison J L 2001 Adv. Mater.13 1557

    [7]

    Palilla F C, Levine A K 1996 Appl. Opt. 5 1467

    [8]

    Jia P Y, Liu S M, Yu M, Luo Y, Fang J, Lin J 2006 Chem. Phys. Lett. 428 358

    [9]

    Su Y G, Li L P, Li G S 2009 J. Mate. Chem. 19 2316

    [10]

    Tang H X, Lü S C 2011 Acta Phys. Sin. 60 037805 (in Chinese) [唐红霞, 吕树臣 2011 60 037805]

    [11]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 61 107804]

    [12]

    Ren Y D, Lü S C 2011 Acta Phys. Sin. 60 087804 (in Chinese) [任艳东, 吕树臣 2011 60 087804]

    [13]

    Di W H, Wang X J, Chen B J, Lu S Z, Zhao X X 2005 J. Phys. Chem. B 109 13154

    [14]

    He C, Guan Y F, Yao L Z, Cai W L, Li X G, Yao Z 2003 Mater. Res. Bull. 38 973

    [15]

    Huang Y H, Jiang D L, Zhang J X, Lin Q L 2010 Acta Phys. Sin. 59 300 (in Chinese) [黄毅华, 江东亮, 张景贤, 林庆玲 2010 59 300]

    [16]

    Jiang B X, Huang T D, Wu Y S, Liu W B, Pan Y B, Feng T, Yang Q H 2008 Chin. Phys. B 17 3407

    [17]

    Meng Q Y, Hua R N, Chen B J, Tian Y, Lu S C, Sun L N 2011 J. Nanosci Nanotechnol 11 182

    [18]

    Chen B J, Wang H Y, Huang S H 2001 Chin. J. Lumin. 22 253 (in Chinese) [陈宝玖, 王海宇, 黄世华 2001 发光学报 22 253]

    [19]

    Tian Y, Qi X H, Wu X W, Hua R N, Chen B J 2009 J. Phys. Chem. C 113 10767

    [20]

    Soga K, Inoue H, Makishima A, Inoue S 1993 J. Lumin. 55 17

    [21]

    Auzel F 2002 J Lumin 100 125

  • [1] 赵旺, 平兆艳, 郑庆华, 周薇薇. 白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为.  , 2018, 67(24): 247801. doi: 10.7498/aps.67.20181523
    [2] 苏小娜, 万英, 周芷萱, 吐沙姑·阿不都吾甫, 胡莲莲, 艾尔肯·斯地克. Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递.  , 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [3] 赵聪, 孟庆裕, 孙文军. Eu3+掺杂CaMoO4微米荧光粉发光性质的研究.  , 2015, 64(10): 107803. doi: 10.7498/aps.64.107803
    [4] 梁锋, 胡义华, 陈丽, 王小涓. 荧光粉CaWO4:Eu3+中WO42-与Eu3+间的能量转递.  , 2013, 62(18): 183302. doi: 10.7498/aps.62.183302
    [5] 汪冬冬, 高辉. 三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究.  , 2013, 62(18): 188102. doi: 10.7498/aps.62.188102
    [6] 李海玲, 王银海, 张万鑫, 王显盛, 赵慧. Eu3+掺杂CaO的合成与红色长余辉发光性能研究.  , 2012, 61(22): 227802. doi: 10.7498/aps.61.227802
    [7] 孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭. Eu3+掺杂CaWO4红色荧光粉发光性质的浓度依赖关系研究.  , 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [8] 冯晓辉, 孟庆裕, 孙江亭, 吕树臣, 孙立男. Eu3+掺杂Gd2W2O9和Gd2(WO4)3纳米荧光粉发光性质研究.  , 2011, 60(3): 037806. doi: 10.7498/aps.60.037806
    [9] 陈敢新, 张勤远, 赵纯, 石冬梅, 姜中宏. 掺Tm3+和Tm3+/Ho3+共掺碲钨酸盐玻璃中能量转换过程和机理.  , 2010, 59(2): 1321-1327. doi: 10.7498/aps.59.1321
    [10] 徐伟, 李成仁, 陈宝玖, 冯志庆. Eu3+作探针研究铋铕共掺硼硅酸盐玻璃光学特性.  , 2010, 59(2): 1328-1332. doi: 10.7498/aps.59.1328
    [11] 罗文雄, 黄世华, 由芳田, 彭洪尚. YBO3:Eu3+纳米晶发光特性.  , 2007, 56(3): 1765-1769. doi: 10.7498/aps.56.1765
    [12] 陈敢新, 张勤远, 杨钢锋, 杨中民, 姜中宏. Tm3+/Ho3+共掺碲酸盐玻璃的2.0μm发光特性及能量传递.  , 2007, 56(7): 4200-4206. doi: 10.7498/aps.56.4200
    [13] 石冬梅, 张勤远, 杨钢锋, 姜中宏. Tm3+/Ho3+共掺镓铋酸盐玻璃1.47μm发光特性和能量传递的研究.  , 2007, 56(5): 2951-2957. doi: 10.7498/aps.56.2951
    [14] 余 华, 孙 健, 刘宝荣, 宋 杰, 赵丽娟, 许京军. Eu3+离子在微晶玻璃研究中的探针作用.  , 2006, 55(11): 6152-6156. doi: 10.7498/aps.55.6152
    [15] 沈 祥, 聂秋华, 徐铁峰, 高 媛. Er3+/Yb3+共掺碲钨酸盐玻璃的光谱性质和热稳定性的研究.  , 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [16] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性.  , 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [17] 李丹, 吕少哲, 陈宝玖, 王海宇, 唐波, 张家骅, 侯尚公, 黄世华. Y2O3:Eu纳米晶中能量传递相互作用的研究.  , 2001, 50(5): 933-937. doi: 10.7498/aps.50.933
    [18] 赵晓红, 陈亭, 张桂兰, 陈文驹, 孙大亮, 宋永远, 陈焕矗. SBN晶体中Eu3+激发态的能量传递.  , 1989, 38(11): 1896-1900. doi: 10.7498/aps.38.1896
    [19] 刘行仁, XU GANG, R. C. POWELL. 在BaYF5中Eu2+和Ho3+的荧光和能量传递.  , 1987, 36(1): 108-113. doi: 10.7498/aps.36.108
    [20] 贾惟义, 严懋勋. 一维反铁磁体二水CsMnCl3中激子的振动猝灭和黄昆-Rhys因子.  , 1983, 32(3): 346-353. doi: 10.7498/aps.32.346
计量
  • 文章访问数:  7976
  • PDF下载量:  691
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-25
  • 修回日期:  2013-01-07
  • 刊出日期:  2013-05-05

/

返回文章
返回
Baidu
map