搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂剂对重掺n型直拉硅片的氧化诱生层错生长的影响

张越 赵剑 董鹏 田达晰 梁兴勃 马向阳 杨德仁

引用本文:
Citation:

掺杂剂对重掺n型直拉硅片的氧化诱生层错生长的影响

张越, 赵剑, 董鹏, 田达晰, 梁兴勃, 马向阳, 杨德仁
cstr: 32037.14.aps.64.096105

Effects of dopants on the growth of oxidation-induced stacking faults in heavily doped n-type Czochralaki silicon

Zhang Yue, Zhao Jian, Dong Peng, Tian Da-Xi, Liang Xing-Bo, Ma Xiang-Yang, Yang De-Ren
cstr: 32037.14.aps.64.096105
PDF
导出引用
  • 对比研究了电阻率几乎相同的重掺锑和重掺磷直拉硅片的氧化诱生层错(OSF)的生长, 以揭示掺杂剂对重掺n型直拉硅片的OSF生长的影响. 研究表明: 在相同的热氧化条件下, 重掺锑直拉硅片的OSF的长度大于重掺磷硅片的. 基于密度泛函理论的第一性原理计算结果表明: 与磷原子相比, 锑原子是更有效的空位俘获中心, 从而抑制空位与自间隙硅原子的复合. 因此, 在经历相同的热氧化时, 氧化产生的自间隙硅原子与空位复合后所剩余的数量在重掺锑硅片中的更多, 从而导致OSF更长.
    Through comparative investigation on the growth of oxidation-induced stacking faults (OSFs) in heavily antimony (Sb)-doped and phosphorus (P)-doped Czochralaki (Cz) silicon wafers with almost the same resistivity, effects of dopants on the growth of OSF in heavily doped n-type Cz silicon are studied experimentally. Moreover, the influences of Sb and P atoms on the recombination of self-interstitials and vacancies are also explored on the basis of the first-principles calculations. It is shown experimentally that all the OSF lengths are almost identical regardless of the type and density of OSF nucleation centers, such as copper precipitates and mechanical scratches etc.. However, it is found that the OSF length of heavily Sb-doped Cz silicon wafer is larger than that of heavily P-doped Cz silicon wafer under the same oxidation condition. Essentially, the OSFs are formed by the aggregation of silicon self-interstitials refleased at the Si/SiO2interface during the oxidation. Therefore, a longer OSF implies that a higher quantity of silicon self-interstitials remains after the recombination of vacancies and silicon self-interstitials in the heavily Sb-doped Cz silicon wafer. The first-principles calculations based on density functional theory (DFT) indicate that Sb atoms combine with vacancies more readily than P atoms. This is actually due to the fact that Sb has a much larger atomic size than P. In other words, as compared with P atoms, the Sb atoms are the moreflefficient vacancy-trapping centers, thus retarding the recombination of vacancies and silicon self-interstitials. Consequently, the silicon self-interstitials remain after recombination with the vacancies that are much more in heavily Sb-doped Cz silicon wafer than in heavily P-doped counterpart when undergoing the same oxidation. In turn, the OSFs in heavily Sb-doped silicon wafers are relatively longer.
    [1]

    Fair R B 1981 J. Electrochem. Soc.: Solid-State Sci. Technol. 128 1360

    [2]

    Leroy B 1979 J. Appl. Phys. 50 7996

    [3]

    Hu S M 1974 J. Appl. Phys. 45 1567

    [4]

    Tan T Y, Gosele U 1982 Appl. Phys. Lett. 40 616

    [5]

    Murarka S P 1977 Phys. Rev. B 16 2849

    [6]

    Dornberger E, Graf D, Suhren M 1997 J. Cryst. Growth 180 343

    [7]

    Sinno T, Susanto H, Brown R A 1999 Appl. Phys. Lett. 75 1533

    [8]

    Porrini M, Voronkov V V, Falster R 2006 Mater. Sci. Eng. B 134 185

    [9]

    Voronkova V V, Falster R 2002 J. Electrochem. Soc. 149 167

    [10]

    Válek L, Lysáček D, Šik J 2007 J. Electrochem. Soc. 154 904

    [11]

    Fair R B, Carim A 1982 J. Electrochem. Soc.: Solid-State Sci. Technol. 129 2319

    [12]

    Wijaranakula W 1991 J. Electrochem. Soc. 138 1131

    [13]

    Chichibu S, Harada T, Matsumoto S 1988 J. J. Appl. Phys. 22 1543

    [14]

    Sun Y C 1984 Semiconductor Testing Technology (first edition) (Beijing: Metallurgical Industry Press) p89 (in Chinese) [孙以材 1984 半导体测试技术(第一版)(北京: 冶金工业出版社) 第89页]

    [15]

    Hu S M 1977 J. Vac. Sci. Technol. 14 17

    [16]

    Sandersa I R, Dobsona P S 1969 Philo. Mag. 20 881

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

  • [1]

    Fair R B 1981 J. Electrochem. Soc.: Solid-State Sci. Technol. 128 1360

    [2]

    Leroy B 1979 J. Appl. Phys. 50 7996

    [3]

    Hu S M 1974 J. Appl. Phys. 45 1567

    [4]

    Tan T Y, Gosele U 1982 Appl. Phys. Lett. 40 616

    [5]

    Murarka S P 1977 Phys. Rev. B 16 2849

    [6]

    Dornberger E, Graf D, Suhren M 1997 J. Cryst. Growth 180 343

    [7]

    Sinno T, Susanto H, Brown R A 1999 Appl. Phys. Lett. 75 1533

    [8]

    Porrini M, Voronkov V V, Falster R 2006 Mater. Sci. Eng. B 134 185

    [9]

    Voronkova V V, Falster R 2002 J. Electrochem. Soc. 149 167

    [10]

    Válek L, Lysáček D, Šik J 2007 J. Electrochem. Soc. 154 904

    [11]

    Fair R B, Carim A 1982 J. Electrochem. Soc.: Solid-State Sci. Technol. 129 2319

    [12]

    Wijaranakula W 1991 J. Electrochem. Soc. 138 1131

    [13]

    Chichibu S, Harada T, Matsumoto S 1988 J. J. Appl. Phys. 22 1543

    [14]

    Sun Y C 1984 Semiconductor Testing Technology (first edition) (Beijing: Metallurgical Industry Press) p89 (in Chinese) [孙以材 1984 半导体测试技术(第一版)(北京: 冶金工业出版社) 第89页]

    [15]

    Hu S M 1977 J. Vac. Sci. Technol. 14 17

    [16]

    Sandersa I R, Dobsona P S 1969 Philo. Mag. 20 881

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

计量
  • 文章访问数:  9318
  • PDF下载量:  845
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-22
  • 修回日期:  2014-11-30
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map