搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声复合电弧声调控特性研究

谢伟峰 范成磊 杨春利 林三宝 张玉岐

引用本文:
Citation:

超声复合电弧声调控特性研究

谢伟峰, 范成磊, 杨春利, 林三宝, 张玉岐

Characteristics of acoustic-controlled arc in ultrasonic wave-assisted arc

Xie Wei-Feng, Fan Cheng-Lei, Yang Chun-Li, Lin San-Bao, Zhang Yu-Qi
PDF
导出引用
  • 超声复合电弧作为一种新的焊接热源, 在电弧焊接过程中可利用超声实现对熔融金属的深度处理, 但是超声与电弧等离子体间相互作用机理还不清晰, 这成为阻碍该技术工程应用的关键问题. 本文通过实验与相应理论针对外加超声场对焊接电弧调控特性进行了研究. 为说明电弧特性, 针对试验中高速摄像采集的电弧图片进行了处理. 对比未加超声情况, 超声复合电弧受内外声场共同作用等离子体拘束程度明显提高, 电弧亮度增强, 弧柱高温区范围扩展至阳极, 中间粒子出现团聚并以一定频率上下抖动. 通过改变超声激励电流大小和声发射端高度, 电弧结构产生显著变化, 在谐振点附近, 电弧挺直度最强, 脉动频率最大. 试验结果显示通过外加超声可以达到对焊接电弧热等离子体调控的目的. 最后结合波动方程和二维声边界元模型, 分析了电弧内部声传播过程以及声场结构对等离子体粒子的作用规律, 这为进一步理解超声对电弧的调控机理打下良好基础.
    As a new welding method, ultrasound has been successfully introduced into the pool during ultrasonic wave-assisted arc welding process. However, the interaction mechanism between the ultrasound and the arc plasma is not clear, thus preflenting the new technique from engineering applications. In this paper, the characteristic of arc regulation by external ultrasonic field is investigated based on the experimental data and the corresponding theory. In order to figure out the characteristics of arc, the arc images obtained by high-speed camera are processed. Compared with the conventional welding arc, ultrasonic wave-assisted arc is more contracted and becomes brighter, the high-temperature region in an arc column greatly expands, and there are internal particle agglomerations shaking up and down at a constant frequency. The arc shape varies with ultrasound excitation current and the height of ultrasonic radiator. In the vicinity of the resonance point, the straight-degree of the arc is the strongest and the ripple frequency is also the largest. Results show that the purpose of using external ultrasound field to regulate the thermal plasma has basically achieved. Analyzing the acoustic pressure wave equation for the neutral component shows that the spatial distribution of acoustic wave can be generated in the arc and its intensity is proportional to the local amplitude of acoustic waves. Acoustic pressure field can be calculated based on the dependence of the electron temperature and density on time and space. In addition to the action of acoustic field within the arc, the arc plasma is also controlled by the acoustic field structure. A two-cylinder model incorporating boundary element method is developed, establishing a relationship between the binding capability and the geometric parameters of an ultrasonic radiator with reflerence to wavelength. This model is successful in predicting resonant modes of the acoustic field and explaining the influences of the ultrasonic radiator height on welding arc. Variation of arc shape is the result of the combined effect of axial and radial acoustic radiation forces on particles (electron, ion and neutral). The thermal efficiency will be significantly enhanced since the particle density increases in the ultrasonic wave-assisted arc. The acoustic propagation in the arc is the interacting process between acoustic and thermal plasmas. The mechanism of ultrasound acting on the arc can be reasonably explained in this study. And the results may provide a reflerence for plasma engineering applications. However, it also needs further reflearch on the impact of an arc on the acoustic field.
    • 基金项目: 国家自然科学基金(批准号: 51275134)和国家自然科学基金重点项目(批准号: 51435004) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51275134), and the Key Program of the National Natural Science Foundation of China(Grant No. 51435004).
    [1]

    Liu Z L, Song W D, Wei H L, Li Z G 1992 Acta Phys. Sin. 41 56 (in Chinese) [刘祖黎, 宋文栋, 魏合林, 李再光 1992 41 56]

    [2]

    Chandrasekhar S, Trehan S K, Weiss G 2009 Phys. Today 13 46

    [3]

    Hu M, Wan S D, Zhong L, Liu H, Wang H 2012 Acta Phys. Sin. 61 45201 (in Chinese) [胡明, 万树德, 钟雷, 刘昊, 汪海 2012 61 45201]

    [4]

    Liu T L, Wang Y L, Lu Y Z 2015 Chin. Phys. B 24 025202

    [5]

    Jin D, Li Y H, Jia M, Li F Y, Cui W, Sun Q, Zhang B L, Li J 2014 Chin. Phys. B 23 035201

    [6]

    Wojaczek K 1960 Beitr. Plasma. Physik. 1 127

    [7]

    Gentle K W, Ingard U 1964 Appl. Phys. Lett. 5 105

    [8]

    Subertova S 1965 Czech. J. Phys. B 15 701

    [9]

    Galechyan G A, Karapetyan D M, Tavakalyan L B 1992 Sov. J. Plasma. Phys. 18 565

    [10]

    Galechyan G A 1995 Phys. Uspekhi. 38 1309

    [11]

    Zavershinskii I P, Kogan E Y 1994 Plasma. Phys. Rep. 20 838

    [12]

    Antinyan M A, Galechyan G A, Tavakalyan L B 1991 High. Temp. 29 870

    [13]

    Sun Q J, Lin S B, Yang C L, Fan C L, Zhao G Q 2008 China. Weld. 17 52

    [14]

    Fan C L, Yang C L, Lin S B, Liu W G. 2013 Weld. J. 91 375

    [15]

    Sun Q J, Lin S B, Yang C L, Zhao G Q 2009 Sci. Technol. Weld. Joi. 14 765

    [16]

    Yuan H R, Lin S B, Yang C L, Fan C L 2011 China. Weld. 20 39

    [17]

    Gentle K W, Ingard U 1964 Appl. Phys. Lett. 5 105

    [18]

    Ingard U 1966 Phys. Rev. 145 41

    [19]

    Gentle K W, Ingard U, Bekefi G 1964 Nature 203 1369

    [20]

    Born G K 2003 Appl. Phys. Lett. 12 46

    [21]

    Barmatz M, Collas P 1985 J. Acoust. Soc. Am. 77 928

    [22]

    Ma H, Kamiya N 2001 Eng. Anal. Bound. Elem. 25 833

    [23]

    Xie W J, Wei B 2004 Phys. Rev. E 70 046611

    [24]

    Xie W J, Cao C D, Wei B 1999 Acta Phys. Sin. 48 250 (in Chinese) [解文军, 曹崇德, 魏炳波 1999 48 250]

  • [1]

    Liu Z L, Song W D, Wei H L, Li Z G 1992 Acta Phys. Sin. 41 56 (in Chinese) [刘祖黎, 宋文栋, 魏合林, 李再光 1992 41 56]

    [2]

    Chandrasekhar S, Trehan S K, Weiss G 2009 Phys. Today 13 46

    [3]

    Hu M, Wan S D, Zhong L, Liu H, Wang H 2012 Acta Phys. Sin. 61 45201 (in Chinese) [胡明, 万树德, 钟雷, 刘昊, 汪海 2012 61 45201]

    [4]

    Liu T L, Wang Y L, Lu Y Z 2015 Chin. Phys. B 24 025202

    [5]

    Jin D, Li Y H, Jia M, Li F Y, Cui W, Sun Q, Zhang B L, Li J 2014 Chin. Phys. B 23 035201

    [6]

    Wojaczek K 1960 Beitr. Plasma. Physik. 1 127

    [7]

    Gentle K W, Ingard U 1964 Appl. Phys. Lett. 5 105

    [8]

    Subertova S 1965 Czech. J. Phys. B 15 701

    [9]

    Galechyan G A, Karapetyan D M, Tavakalyan L B 1992 Sov. J. Plasma. Phys. 18 565

    [10]

    Galechyan G A 1995 Phys. Uspekhi. 38 1309

    [11]

    Zavershinskii I P, Kogan E Y 1994 Plasma. Phys. Rep. 20 838

    [12]

    Antinyan M A, Galechyan G A, Tavakalyan L B 1991 High. Temp. 29 870

    [13]

    Sun Q J, Lin S B, Yang C L, Fan C L, Zhao G Q 2008 China. Weld. 17 52

    [14]

    Fan C L, Yang C L, Lin S B, Liu W G. 2013 Weld. J. 91 375

    [15]

    Sun Q J, Lin S B, Yang C L, Zhao G Q 2009 Sci. Technol. Weld. Joi. 14 765

    [16]

    Yuan H R, Lin S B, Yang C L, Fan C L 2011 China. Weld. 20 39

    [17]

    Gentle K W, Ingard U 1964 Appl. Phys. Lett. 5 105

    [18]

    Ingard U 1966 Phys. Rev. 145 41

    [19]

    Gentle K W, Ingard U, Bekefi G 1964 Nature 203 1369

    [20]

    Born G K 2003 Appl. Phys. Lett. 12 46

    [21]

    Barmatz M, Collas P 1985 J. Acoust. Soc. Am. 77 928

    [22]

    Ma H, Kamiya N 2001 Eng. Anal. Bound. Elem. 25 833

    [23]

    Xie W J, Wei B 2004 Phys. Rev. E 70 046611

    [24]

    Xie W J, Cao C D, Wei B 1999 Acta Phys. Sin. 48 250 (in Chinese) [解文军, 曹崇德, 魏炳波 1999 48 250]

  • [1] 万震, 李成, 刘宇健, 宋学锋, 樊尚春. 石墨烯谐振式力学量传感器研究进展.  , 2022, 71(12): 126801. doi: 10.7498/aps.71.20220215
    [2] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟.  , 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [3] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验.  , 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [4] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应.  , 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [5] 郭恒, 苏运波, 李和平, 曾实, 聂秋月, 李占贤, 李志辉. 亚大气压六相交流电弧等离子体射流特性研究:实验测量.  , 2018, 67(4): 045201. doi: 10.7498/aps.67.20172556
    [6] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟.  , 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [7] 李刘合, 刘红涛, 罗辑, 许亿. 带状真空电弧磁过滤器等离子体分布特性及制备类金刚石膜研究.  , 2016, 65(6): 065202. doi: 10.7498/aps.65.065202
    [8] 施展, 陈来柱, 佟永帅, 郑智滨, 杨水源, 王翠萍, 刘兴军. Terfenol-D/PZT磁电复合材料的磁电相位移动研究.  , 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [9] 王伟宗, 吴翊, 荣命哲, 杨飞. 局域热力学平衡态空气电弧等离子体输运参数计算研究.  , 2012, 61(10): 105201. doi: 10.7498/aps.61.105201
    [10] 丁世敬, 黄刘宏, 李跃波, 薛凡喜. 基于材料反射率谐振特性测试电磁参数的自由空间法.  , 2012, 61(22): 220601. doi: 10.7498/aps.61.220601
    [11] 杨锐, 谢拥军, 李晓峰, 蒋俊, 王元源, 王瑞. 异向介质谐振响应的Floquet模分析.  , 2009, 58(2): 901-907. doi: 10.7498/aps.58.901
    [12] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析.  , 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [13] 杨 帆, 文玉梅, 李 平, 郑 敏, 卞雷祥. 考虑损耗的磁致/压电层合材料谐振磁电响应分析.  , 2007, 56(6): 3539-3545. doi: 10.7498/aps.56.3539
    [14] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演.  , 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [15] 张 琳, 李恩普, 冯 伟, 洪振宇, 解文军, 马仰华. 声悬浮过程的激光全息干涉研究.  , 2005, 54(5): 2038-2042. doi: 10.7498/aps.54.2038
    [16] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟.  , 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
    [17] 袁行球, 李 辉, 赵太泽, 王 飞, 俞国扬, 郭文康, 须 平. 直流电弧等离子体炬的特性研究.  , 2004, 53(11): 3806-3813. doi: 10.7498/aps.53.3806
    [18] 杨维紘. 二维等离子体电弧随时间演化的数值模拟.  , 2000, 49(4): 768-774. doi: 10.7498/aps.49.768
    [19] 谷云鹏, 宫 野, 孙继忠. 颗粒与交流电弧等离子体温度场的相互作用.  , 1999, 48(6): 1078-1085. doi: 10.7498/aps.48.1078
    [20] 王兆申, 汪亚民. 用共焦谐振腔法测量等离子体的电子迴旋辐射.  , 1984, 33(1): 47-52. doi: 10.7498/aps.33.47
计量
  • 文章访问数:  7116
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-16
  • 修回日期:  2014-12-29
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map