搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共心双环外势中两分量偶极玻色-爱因斯坦凝聚体的基态结构研究

张晓斐 张培 陈光平 董彪 谭仁兵 张首刚

引用本文:
Citation:

共心双环外势中两分量偶极玻色-爱因斯坦凝聚体的基态结构研究

张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚

Ground state of a two-component dipolar Bose-Einstein condensate confined in a coupled annular potential

Zhang Xiao-Fei, Zhang Pei, Chen Guang-Ping, Dong Biao, Tan Ren-Bing, Zhang Shou-Gang
PDF
导出引用
  • 利用虚时演化方法研究了共心双环外势中具有偶极-偶极相互作用的两分量玻色-爱因斯坦凝聚体的基态结构, 探索了接触相互作用和长程各向异性的偶极-偶极相互作用对系统基态的影响. 研究发现, 偶极-偶极相互作用作为系统的又一调控参数, 可用于得到系统的不同的基态相, 并用于控制不同基态相间的转化.
    By using the imaginary-time propagation method, we study the ground state structure of a two-component dipolar Bose-Einstein condensate confined in a coupled annular potential. The effects of contact and dipole-dipole interaction on the ground state density distribution of such a system are investigated in detail. The results show that the dipole-dipole interaction, acting as a new degree of freedom, can be used to obtain the desired ground state phases, and to control the phase transition between different ground states.
    • 基金项目: 国家自然科学基金(批准号: 11104064)、中国科学院“西部之光”重点项目(批准号: 2012ZD02)、陕西省科学技术研究发展计划(批准号: 2013KJXX-03)和重庆市基础与前沿研究计划(批准号: cstc2014jcyjA50016) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11104064), the key project fund of the CAS for the “Western Light” Talent Cultivation Plan, China (Grant No. 2012ZD02), the Science and Technology Project of Shaanxi Province, China (Grant No. 2013KJXX-03), and the Cutting-edge Basic Research Program of Chongqing Municipality, China (Grant No. cstc2014jcyjA50016).
    [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]

    Bradley C C, Sackett C A, Tollet J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [3]

    Davis K B, Mewes M O, Andrews M R, VanDruten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [4]

    Inouye S, Andrews M, Stenger J, Miesner H, Stamper-Kurn D, Ketterle W 1998 Nature 392 151

    [5]

    Kevrekidis P G, Theocharis G, Frantzeskakis D J, Malomed B A 2003 Phys. Rev. Lett. 90 230401

    [6]

    Merhasin I, Malomed B A, Driben R 2005 J. Phys. B 38 877

    [7]

    Kawaguchi Y, Saito H, Ueda M 2006 Phys. Rev. Lett. 97 130404

    [8]

    Takahashi M, Ghosh S, Mizushima T, Machida K 2007 Phys. Rev. Lett. 98 260403

    [9]

    Kawaguchi Y, Saito H, Ueda M 2007 Phys. Rev. Lett. 98 110406

    [10]

    Wu B, Niu Q 2000 Phys. Rev. A 61 023402

    [11]

    Liu J, Wu B, Niu Q 2003 Phys. Rev. Lett. 90 170404

    [12]

    Shi T, Zou S H, Hu H, Sun C P, Yi S 2013 Phys. Rev. Lett. 110 045301

    [13]

    Stuhler J, Griesmaier A, Koch T, Fattori M, Pfau T, Giovanazzi S, Pedri P, Santos L 2005 Phys. Rev. Lett. 95 150406

    [14]

    Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T 2005 Phys. Rev. Lett. 94 160401

    [15]

    Pollack S E, Dries D, Junker M, Chen Y P, Corcovilos T A, Hulet R G 2009 Phys. Rev. Lett. 102 090402

    [16]

    McClelland J J, Hanssen J L 2006 Phys. Rev. Lett. 96 143005

    [17]

    Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R, Ferlaino F 2012 Phys. Rev. Lett. 108 210401

    [18]

    Lu M W, Youn S H, Lev B L 2010 Phys. Rev. Lett. 104 063001

    [19]

    Lu M W, Burdick N Q, Youn S H, Lev B L 2011 Phys. Rev. Lett. 107 190401

    [20]

    Martikainen J P, Mackie M, Suominen K A 2001 Phys. Rev. A 64 037601

    [21]

    Góral K, Santos L 2002 Phys. Rev. A 66 023613

    [22]

    Shirley W E, Anderson B M, Clark C W, Wilson R M 2014 Phys. Rev. Lett. 113 165301

    [23]

    Góral K, Santos L, Lewenstein M 2002 Phys. Rev. Lett. 88 170406

    [24]

    Mller S, Billy J, Henn E A L, Kadau H, Griesmaier A, Jona-Lasinio M, Santos L, Pfau T 2011 Phys. Rev. A 84 053601

    [25]

    Huang J S, Chen H F, Xie Z W 2008 Acta Phys. Sin. 57 3435 (in Chinese) [黄劲松, 陈海峰, 谢征微 2008 57 3435]

    [26]

    Khn S, Judd T E 2013 Phys. Rev. A 87 023608

    [27]

    Situ S P, He Y Z 2011 Chin. Phys. B 20 010310

    [28]

    Xiong B, Gong J, Pu H, Bao W, Li B 2009 Phys. Rev. A 79 013626

    [29]

    Zang X F, Li J P, Tan L 2007 Acta Phys. Sin. 56 4348 (in Chinese) [臧小飞, 李菊萍, 谭磊 2007 56 4348]

    [30]

    Abad M, Guilleumas M, Mayol R, Pi M, Jezeket D M 2010 Phys. Rev. A 81 043619

    [31]

    Abad M, Guilleumas M, Mayo R, Pi M, Jezeket D M 2011 Europhys. Lett. 94 10004

    [32]

    Zöllner S, Bruun G M, Pethick C J, Reimann S M 2011 Phys. Rev. Lett. 107 035301

    [33]

    Malet F, Kristensen T, Reimann S M, Kavoulakis G M 2011 Phys. Rev. A 83 033628

    [34]

    Malet F, Kavoulakis G M, Reimann S M 2011 Phys. Rev. A 84 043626

    [35]

    Karabulut E Ö, Malet F, Kavoulakis G M, Reimann S M 2013 Phys. Rev. A 87 033615

    [36]

    Zhang Y C, Wang H T, Shen S Q 2013 Chin. Phys. B 22 090501

    [37]

    Zhang J, Zhai H 2006 Physics 35 553 (in Chinese) [张剑, 翟荟 2006 物理 35 553]

    [38]

    Wu J H, Xu S N 2013 Chin. Phys. B 22 120304

    [39]

    Cai Y, Rosenkranz M, Lei Z, Bao W 2010 Phys. Rev. A 82 043623

    [40]

    Lahaye T, Menotti C, Santos L, Lewenstein M, Pfau T 2009 Rep. Prog. Phys. 72 126401

    [41]

    Malet F, Kavoulakis G M, Reimann S M 2010 Phys. Rev. A 81 013630

    [42]

    Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F, Zhang S G 2014 Chin. Phys. B 23 070308

  • [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]

    Bradley C C, Sackett C A, Tollet J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [3]

    Davis K B, Mewes M O, Andrews M R, VanDruten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [4]

    Inouye S, Andrews M, Stenger J, Miesner H, Stamper-Kurn D, Ketterle W 1998 Nature 392 151

    [5]

    Kevrekidis P G, Theocharis G, Frantzeskakis D J, Malomed B A 2003 Phys. Rev. Lett. 90 230401

    [6]

    Merhasin I, Malomed B A, Driben R 2005 J. Phys. B 38 877

    [7]

    Kawaguchi Y, Saito H, Ueda M 2006 Phys. Rev. Lett. 97 130404

    [8]

    Takahashi M, Ghosh S, Mizushima T, Machida K 2007 Phys. Rev. Lett. 98 260403

    [9]

    Kawaguchi Y, Saito H, Ueda M 2007 Phys. Rev. Lett. 98 110406

    [10]

    Wu B, Niu Q 2000 Phys. Rev. A 61 023402

    [11]

    Liu J, Wu B, Niu Q 2003 Phys. Rev. Lett. 90 170404

    [12]

    Shi T, Zou S H, Hu H, Sun C P, Yi S 2013 Phys. Rev. Lett. 110 045301

    [13]

    Stuhler J, Griesmaier A, Koch T, Fattori M, Pfau T, Giovanazzi S, Pedri P, Santos L 2005 Phys. Rev. Lett. 95 150406

    [14]

    Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T 2005 Phys. Rev. Lett. 94 160401

    [15]

    Pollack S E, Dries D, Junker M, Chen Y P, Corcovilos T A, Hulet R G 2009 Phys. Rev. Lett. 102 090402

    [16]

    McClelland J J, Hanssen J L 2006 Phys. Rev. Lett. 96 143005

    [17]

    Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R, Ferlaino F 2012 Phys. Rev. Lett. 108 210401

    [18]

    Lu M W, Youn S H, Lev B L 2010 Phys. Rev. Lett. 104 063001

    [19]

    Lu M W, Burdick N Q, Youn S H, Lev B L 2011 Phys. Rev. Lett. 107 190401

    [20]

    Martikainen J P, Mackie M, Suominen K A 2001 Phys. Rev. A 64 037601

    [21]

    Góral K, Santos L 2002 Phys. Rev. A 66 023613

    [22]

    Shirley W E, Anderson B M, Clark C W, Wilson R M 2014 Phys. Rev. Lett. 113 165301

    [23]

    Góral K, Santos L, Lewenstein M 2002 Phys. Rev. Lett. 88 170406

    [24]

    Mller S, Billy J, Henn E A L, Kadau H, Griesmaier A, Jona-Lasinio M, Santos L, Pfau T 2011 Phys. Rev. A 84 053601

    [25]

    Huang J S, Chen H F, Xie Z W 2008 Acta Phys. Sin. 57 3435 (in Chinese) [黄劲松, 陈海峰, 谢征微 2008 57 3435]

    [26]

    Khn S, Judd T E 2013 Phys. Rev. A 87 023608

    [27]

    Situ S P, He Y Z 2011 Chin. Phys. B 20 010310

    [28]

    Xiong B, Gong J, Pu H, Bao W, Li B 2009 Phys. Rev. A 79 013626

    [29]

    Zang X F, Li J P, Tan L 2007 Acta Phys. Sin. 56 4348 (in Chinese) [臧小飞, 李菊萍, 谭磊 2007 56 4348]

    [30]

    Abad M, Guilleumas M, Mayol R, Pi M, Jezeket D M 2010 Phys. Rev. A 81 043619

    [31]

    Abad M, Guilleumas M, Mayo R, Pi M, Jezeket D M 2011 Europhys. Lett. 94 10004

    [32]

    Zöllner S, Bruun G M, Pethick C J, Reimann S M 2011 Phys. Rev. Lett. 107 035301

    [33]

    Malet F, Kristensen T, Reimann S M, Kavoulakis G M 2011 Phys. Rev. A 83 033628

    [34]

    Malet F, Kavoulakis G M, Reimann S M 2011 Phys. Rev. A 84 043626

    [35]

    Karabulut E Ö, Malet F, Kavoulakis G M, Reimann S M 2013 Phys. Rev. A 87 033615

    [36]

    Zhang Y C, Wang H T, Shen S Q 2013 Chin. Phys. B 22 090501

    [37]

    Zhang J, Zhai H 2006 Physics 35 553 (in Chinese) [张剑, 翟荟 2006 物理 35 553]

    [38]

    Wu J H, Xu S N 2013 Chin. Phys. B 22 120304

    [39]

    Cai Y, Rosenkranz M, Lei Z, Bao W 2010 Phys. Rev. A 82 043623

    [40]

    Lahaye T, Menotti C, Santos L, Lewenstein M, Pfau T 2009 Rep. Prog. Phys. 72 126401

    [41]

    Malet F, Kavoulakis G M, Reimann S M 2010 Phys. Rev. A 81 013630

    [42]

    Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F, Zhang S G 2014 Chin. Phys. B 23 070308

  • [1] 应耀俊, 李海彬. 不对称双势阱中玻色-爱因斯坦凝聚体的动力学.  , 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [2] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现.  , 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [3] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度.  , 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [4] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控.  , 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [5] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿.  , 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [6] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究.  , 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [7] 赵文垒, 豆福全, 王建忠. 玻色-爱因斯坦凝聚体中非线性相互作用对量子共振棘流的影响.  , 2012, 61(22): 220503. doi: 10.7498/aps.61.220503
    [8] 袁都奇. 囚禁弱相互作用玻色气体的势场优化准则.  , 2011, 60(3): 030307. doi: 10.7498/aps.60.030307
    [9] 黄芳, 李海彬. 双势阱中玻色-爱因斯坦凝聚的绝热隧穿.  , 2011, 60(2): 020303. doi: 10.7498/aps.60.020303
    [10] 赵建刚, 孙长勇, 梁宝龙, 苏杰. 虚光场对玻色-爱因斯坦凝聚体与二项式光场相互作用系统中光场压缩性质的影响.  , 2009, 58(7): 4635-4640. doi: 10.7498/aps.58.4635
    [11] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控.  , 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [12] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性.  , 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [13] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用.  , 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [14] 李菊萍, 谭 磊, 臧小飞, 杨 科. 偶极旋量玻色-爱因斯坦凝聚体在外场中的自旋混合动力学.  , 2008, 57(12): 7467-7476. doi: 10.7498/aps.57.7467
    [15] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响.  , 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [16] 臧小飞, 李菊萍, 谭 磊. 偶极-偶极相互作用下双势阱中旋量玻色-爱因斯坦凝聚磁化率的非线性动力学性质.  , 2007, 56(8): 4348-4352. doi: 10.7498/aps.56.4348
    [17] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应.  , 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [18] 余学才, 莫 影. 势场中玻色-爱因斯坦凝聚的临界温度.  , 2004, 53(12): 4075-4079. doi: 10.7498/aps.53.4075
    [19] 周 明, 方家元, 黄春佳. 相互作用原子玻色-爱因斯坦凝聚体诱导的光场压缩效应.  , 2003, 52(8): 1916-1919. doi: 10.7498/aps.52.1916
    [20] 闫珂柱, 谭维翰. 简谐势阱中具有吸引相互作用原子体系的玻色-爱因斯坦凝聚.  , 2000, 49(10): 1909-1911. doi: 10.7498/aps.49.1909
计量
  • 文章访问数:  6876
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-18
  • 修回日期:  2014-10-20
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map