搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流经矩形喷嘴的超音速射流啸叫模式切换的实验研究

陈喆 吴九汇 陈鑫 雷浩 侯洁洁

引用本文:
Citation:

流经矩形喷嘴的超音速射流啸叫模式切换的实验研究

陈喆, 吴九汇, 陈鑫, 雷浩, 侯洁洁

Experimental study on screech tone mode switching of supersonic jet flowing through rectangular nozzles

Chen Zhe, Wu Jiu-Hui, Chen Xin, Lei Hao, Hou Jie-Jie
PDF
导出引用
  • 通过实验分析比较了对于相同高度不同宽度的四种矩形喷嘴, 当压力在0.2 MPa到0.8 MPa 之间变动时, 欠膨胀超音速自由射流的啸叫特性和对应的流场纹影结构.结果表明: 不同宽高比喷嘴的超音速自由射流辐射噪声中的单频离散啸叫存在两种不同的啸叫模式, 且随着射流压力的变化会出现模式间的切换.所谓模式切换是指不同模式的轮流占优和消失的现象.啸叫模式间的切换及占优区间的宽度随着喷嘴宽高比的减小而缩短.其中, 宽高比为2的射流啸叫模式中的一种模式所占的射流压降区间异常小, 此现象未在相关文献中提及; 喷嘴宽高比为4的射流啸叫占优区间内, 啸叫基频-射流压力曲线在0.49 MPa时出现了间断、跳跃现象.随着压力的降低激波纹影的轴线出现了抖动, 不同宽高比下流场结构的稳定性随压力变化的规律各异.射流压力在0.70 MPa到0.45 MPa区间内, 随着宽高比减小, 第一波节格栅的激波致密度减弱, 且出现轴向脉动, 第二波节后方的流场变得紊乱; 当射流压力低于0.45 MPa 时, 激波串结构随着宽高比的增大而趋于稳定, 在此压力区间内周期性激波格栅结构较射流压力在0.45 MPa以上时有所减弱.结合啸叫频谱及纹影图分析, 可初步认为, 第二、三波节也会对啸叫频率的声压幅值起到反馈增强作用.
    An experiment was carried out to analyse and compare the screech tone characteristics and schlieren structures of an under-expanded jet flowing through four rectangular nozzles, aspect ratios of which are different (having the same height but different widths), with the jet pressure ranging from 0.2 to 0.8 MPa. Results indicate that there exist two different screech tone modes in the noise generated by supersonic jet flowing through the rectangular nozzles with different aspect ratios, and a mode switching can be found by altering the jet pressure. Mode switching is a phenomenon that different mode dominates or disappears according to the change of jet pressure. The switching time of fundamental frequencies in the screech tone modes and the width of the domination interval would be shortened as the aspect ratio decreases. The jet flow pressure drop interval of one mode, whose aspect ratio is 2, is extremely small. This phenomenon has never been mentioned in the literature. When the aspect ratio of the rectangular nozzle is 4, there exists an interruption and skip on the fundamental frequency-jet pressure curve within the jet flow domination interval for jet pressure at 0.49 MPa. As the pressure reduces, the axes of the schlieren figures begin to shake, and the structure stability of the flow field with different aspect ratio varies with the jet pressure. When the jet pressure is within the range of 0.45 to 0.70 MPa, the density in the first shock-cell decreases as the aspect ratio reduces. Meanwhile, axial pulsation and disorder of the flow field behind the second shock-cell appear. When the jet pressure is under 0.45 MPa, the flow field structure of the shock wave becomes more stable as the aspect ratio increases. In this pressure region, the periodical shock-cell structure is weaker than those above 0.45 MPa. Analyzing the screech frequency spectrum and the schlieren figures, we can find that the second and third shock-cells also have feedback and enhancement for the sound pressure of the screech frequency.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51106178)和长江学者和创新团队发展计划资助(批准号: IRT1172)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51106178), and the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education, China (Grant No. IRT1172).
    [1]

    Tam C K W 1998 Theoret.Comput.Fluid Dynam. 10 393

    [2]

    Powell A 1953 Proceedings Phys .Soc .London. 66 1039

    [3]

    Powell A 1953 Journal Acoust .Soc.An. 25 385

    [4]

    Tam C K W 1995 Annu.Rev.Fluid Mech. 27 17

    [5]

    He F, Hao P F, Zhang X W 2003 Acta Acustica 28 182 (in Chinese) [何枫, 郝鹏飞, 张锡文 2003 声学学报 28 182]

    [6]

    Zhang Q, Chen X, He L M, Rong K 2013 Acta Phys. Sin. 62 084706 (in Chinese) [张强, 陈鑫, 何立明, 荣康 2013 62 084706]

    [7]

    Berland J, Bogey C, Bailly C 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, UN, May 8-10 2006 p2496

    [8]

    Panda J, Raman G, Zaman K B M Q 2004 NASA/TM 2004-212481

    [9]

    He F, Xie J S, Yao C H 2002 J. Propulsion Technol. 29 98 (in Chinese) [何枫, 谢俊石, 姚朝晖 2002 推进技术 29 98]

    [10]

    Cui X G, Yao C H 2008 J. Propulsion Technol. 29 98 (in Chinese) [崔新光, 姚朝晖 2008 推进技术 29 98]

    [11]

    Zhang B Ji H H 2005Journal of Aerospace Power 20 0104 (in Chinese) [张勃, 吉洪湖 2005 航空动力学报 20 0104]

    [12]

    Zhang B, Ji H H, Cao G Z, Huang W 2010 Journal of Aerospace Power 25 2244 (in Chinese) [张勃, 吉洪湖, 曹广州, 黄伟 2010 航空动力学报 25 2244]

    [13]

    Zhu Y Z, Yi S H, He L, T L F, Zhou Y W 2013 Chin. Phys. B 22 014702

  • [1]

    Tam C K W 1998 Theoret.Comput.Fluid Dynam. 10 393

    [2]

    Powell A 1953 Proceedings Phys .Soc .London. 66 1039

    [3]

    Powell A 1953 Journal Acoust .Soc.An. 25 385

    [4]

    Tam C K W 1995 Annu.Rev.Fluid Mech. 27 17

    [5]

    He F, Hao P F, Zhang X W 2003 Acta Acustica 28 182 (in Chinese) [何枫, 郝鹏飞, 张锡文 2003 声学学报 28 182]

    [6]

    Zhang Q, Chen X, He L M, Rong K 2013 Acta Phys. Sin. 62 084706 (in Chinese) [张强, 陈鑫, 何立明, 荣康 2013 62 084706]

    [7]

    Berland J, Bogey C, Bailly C 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, UN, May 8-10 2006 p2496

    [8]

    Panda J, Raman G, Zaman K B M Q 2004 NASA/TM 2004-212481

    [9]

    He F, Xie J S, Yao C H 2002 J. Propulsion Technol. 29 98 (in Chinese) [何枫, 谢俊石, 姚朝晖 2002 推进技术 29 98]

    [10]

    Cui X G, Yao C H 2008 J. Propulsion Technol. 29 98 (in Chinese) [崔新光, 姚朝晖 2008 推进技术 29 98]

    [11]

    Zhang B Ji H H 2005Journal of Aerospace Power 20 0104 (in Chinese) [张勃, 吉洪湖 2005 航空动力学报 20 0104]

    [12]

    Zhang B, Ji H H, Cao G Z, Huang W 2010 Journal of Aerospace Power 25 2244 (in Chinese) [张勃, 吉洪湖, 曹广州, 黄伟 2010 航空动力学报 25 2244]

    [13]

    Zhu Y Z, Yi S H, He L, T L F, Zhou Y W 2013 Chin. Phys. B 22 014702

  • [1] 张升博, 张焕好, 张军, 毛勇建, 陈志华, 石启陈, 郑纯. 激波与轻质气柱作用过程的磁场抑制特性.  , 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] 张升博, 张焕好, 陈志华, 郑纯. 不同界面组分分布对Richtmyer-Meshkov不稳定性的影响.  , 2023, 72(10): 105202. doi: 10.7498/aps.72.20222090
    [3] 贾雷明, 王智环, 王澍霏, 钟巍, 田宙. 二维平面激波折射的理论计算方法.  , 2023, 72(6): 064701. doi: 10.7498/aps.72.20222042
    [4] 党子涵, 郑纯, 张焕好, 陈志华. 汇聚激波诱导具有正弦扰动双层重气柱界面的演化机理.  , 2022, 71(21): 214703. doi: 10.7498/aps.71.20221012
    [5] 朱聪, 丁留贯, 周坤论, 钱天麒. II型射电暴分类及其与太阳高能粒子事件的关系.  , 2021, 70(9): 099601. doi: 10.7498/aps.70.20201800
    [6] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理.  , 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [7] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流.  , 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [8] 孙晓燕, 朱军芳. 部分道路关闭引起的交通激波特性研究.  , 2015, 64(11): 114502. doi: 10.7498/aps.64.114502
    [9] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展.  , 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [10] 陈植, 易仕和, 朱杨柱, 何霖, 全鹏程. 强梯度复杂流场中的粒子动力学响应试验研究.  , 2014, 63(18): 188301. doi: 10.7498/aps.63.188301
    [11] 张强, 陈鑫, 何立明, 荣康. 矩形喷口欠膨胀超声速射流对撞的实验研究.  , 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [12] 沙莎, 陈志华, 张焕好, 姜孝海. Schardin问题的数值研究.  , 2012, 61(6): 064702. doi: 10.7498/aps.61.064702
    [13] 王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云. 等离子体气动激励控制激波的机理研究.  , 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [14] 吴钦宽. 一类非线性方程激波解的Sinc-Galerkin方法.  , 2006, 55(4): 1561-1564. doi: 10.7498/aps.55.1561
    [15] 吴钦宽. 一类激波问题的间接匹配解.  , 2005, 54(6): 2510-2513. doi: 10.7498/aps.54.2510
    [16] 袁行球, 李 辉, 赵太泽, 王 飞, 郭文康, 须 平. 超音速等离子体炬的数值模拟.  , 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [17] 周效锋, 陶淑芬, 刘佐权, 阚家德, 李德修. Fe73.5Cu1Nb3Si13.5B9非晶合金的激波纳米晶化速率和晶化度的对比研究.  , 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [18] 何枫, 杨京龙, 沈孟育. 激波和剪切层相互作用下的超音速射流.  , 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [19] 吕晓阳, 孔令江, 刘慕仁. 一维元胞自动机随机交通流模型的宏观方程分析.  , 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波.  , 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  6268
  • PDF下载量:  716
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-16
  • 修回日期:  2014-08-19
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map