搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于度的正/负相关相依网络模型及其鲁棒性研究

陈世明 吕辉 徐青刚 许云飞 赖强

引用本文:
Citation:

基于度的正/负相关相依网络模型及其鲁棒性研究

陈世明, 吕辉, 徐青刚, 许云飞, 赖强

The model of interdependent network based on positive/negativecorrelation of the degree and its robustness study

Chen Shi-Ming, Lü Hui, Xu Qing-Gang, Xu Yun-Fei, Lai Qiang
PDF
导出引用
  • 利用典型的Barabási-Albert无标度网络构建了基于度的正/负相关相依网络模型, 该模型考虑子网络间的相依方式及相依程度, 主要定义了两个参数F和K, F表示相依节点比例, K表示相依冗余度. 在随机攻击及基于度的蓄意攻击模式下, 针对网络的级联失效问题, 研究了不同的F值和K值对该相依网络模型鲁棒性的影响, 与随机相依网络模型进行了对比研究. 仿真结果表明:无论是随机相依或是基于度的正/负相关相依网络, 其鲁棒性都是随着F的增大而减弱, 随着K的增大而增强; 在随机攻击下, 全相依模式(F=1)时, 基于度正相关相依网络模型鲁棒性最优, 部分相依模式 (F =0.2, 0.5, 0.8)时, 基于度的负相关相依网络模型则表现出更好的鲁棒性. 而在基于度的蓄意攻击下, 无论F为何值, 基于度的正相关相依网络模型表现出弱鲁棒性.
    The model of interdependent network based on positive/negative correlation of the degree is constructed by the typical Barabási-Albert network in this paper. Dependency modality and dependency degree are considered in the model. Two parameters F and K are defined, which represent the proportion of dependency node and the redundancy of dependency, respectively. We study the influences of different values of F and K on the robustness of interdependent network in cascading failures under degree-based attacks and random attacks and also compare the results with those from the random interdependent network model. The simulation results show that the robustness of both random independency and interdependent network based on positive/negative correlation of the degree decreases as F increases and increases as K increases; in the model of full interdependence (F = 1), the robustness of interdependent network based on positive correlation of the degree is optimal under random attacks; the interdependent network based on negative correlation of the degree shows stronger robustness in the model of partial interdependence (F= 0.2, 0.5, 0.8). While the interdependent network based on positive correlation of the degree shows poorer robustness with any value of F under degree-based attacks.
    • 基金项目: 教育部人文社会科学研究规划基金(批准号: 13YJAZH010)和国家自然科学基金(批准号: 61364017, 60804066)资助的课题.
    • Funds: Project supported by the Humanities and Social Science Project of Ministry of Education of China (Grant No. 13YJAZH010) and the National Natural Science Foundation of China (Grant Nos. 61364017, 60804066).
    [1]

    Hu Y, Ksherim B, Cohen R, Havlin S 2011 Phys. Rev. E 84 066116

    [2]

    Morris R G, Barthelemy M 2012 Phys. Rev. Lett. 109 128703

    [3]

    Buldyrev S V, Shere N W, Cwilich G A 2011 Phys. Rev. E 83 016112

    [4]

    Albert R, Albert I, Nakarado G L 2004 Phys. Rev. E 69 025103

    [5]

    Shen Y, Pei W J, Wang K, Wang S P 2009 Chin. Phys. B 18 3783

    [6]

    Gong Z Q, Wang X J, Zhi R, Feng A X 2011 Chin. Phys. B 20 079201

    [7]

    Cohen R, Erez K, Ben-Avraham D, Havlin S 2000 Phys. Rev. Lett. 85 4626

    [8]

    Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901

    [9]

    Cohen R, Erez K, Ben-Avraham D, Havlin S 2001 Phys. Rev. Lett. 86 3682

    [10]

    Zhang Z Z, Xu W J, Zeng S Y, Lin J R 2014 Chin. Phys. B 23 088902

    [11]

    Shi B Y, Liu J M 2012 IEEE Trans. Syst. Man Cy. B 42 1369

    [12]

    L T Y, Piao X F, Xie W Y, Huang S B 2012 Acta Phys. Sin. 61 170512 (in Chinese) [吕天阳, 朴秀峰, 谢文艳, 黄少滨 2012 61 170512]

    [13]

    Xiao Y D, Lao S Y, Hou L L, Bai L 2013 Acta Phys. Sin. 62 180201 (in Chinese) [肖延东, 老松杨, 侯绿林, 白亮 2013 62 180201]

    [14]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [15]

    Rinaldi S M, Peerenboom J P, Kelly T K 2001 IEEE Control Syst. 21 11

    [16]

    Gao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. Lett. 107 195701

    [17]

    Parshani R, Buldyrev S V, Havlin S 2010 Phys. Rev. Lett. 105 048701

    [18]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [19]

    Li W, Bashan A, Buldyrev S V, Stanley H E, Havlin S 2012 Phys. Rev. Lett. 108 228702

    [20]

    Gao J X, Buldyrev S V, Stanly H E, Hanlin S 2012 Nat. Phys. 8 40

    [21]

    Li G Y, Cheng B S, Zhang P, Li D Q 2013 J. Univ. Electron. Sci. Technol. China 42 23 (in Chinese) [李国颖, 成柏松, 张 鹏, 李大庆 2013 电子科技大学学报 42 23]

    [22]

    Huang X Q, Gao J X, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 065101

    [23]

    Zhou D, Agostino G D, Scala A, Stanley H E 2012 Phys. Rev. E 86 066103

    [24]

    Donges J F, Schultz H C H, Marwan N, Zou Y, Kurths J 2011 Eur. Phys. J. B 84 635

    [25]

    Shai S, Dobson S 2012 Phys. Rev. E 86 066120

    [26]

    Chen S M, Zou X Q, L H, Xu Q G 2014 Acta Phys. Sin. 63 028902 (in Chinese) [陈世明, 邹小群, 吕辉, 徐青刚 2014 63 028902]

  • [1]

    Hu Y, Ksherim B, Cohen R, Havlin S 2011 Phys. Rev. E 84 066116

    [2]

    Morris R G, Barthelemy M 2012 Phys. Rev. Lett. 109 128703

    [3]

    Buldyrev S V, Shere N W, Cwilich G A 2011 Phys. Rev. E 83 016112

    [4]

    Albert R, Albert I, Nakarado G L 2004 Phys. Rev. E 69 025103

    [5]

    Shen Y, Pei W J, Wang K, Wang S P 2009 Chin. Phys. B 18 3783

    [6]

    Gong Z Q, Wang X J, Zhi R, Feng A X 2011 Chin. Phys. B 20 079201

    [7]

    Cohen R, Erez K, Ben-Avraham D, Havlin S 2000 Phys. Rev. Lett. 85 4626

    [8]

    Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901

    [9]

    Cohen R, Erez K, Ben-Avraham D, Havlin S 2001 Phys. Rev. Lett. 86 3682

    [10]

    Zhang Z Z, Xu W J, Zeng S Y, Lin J R 2014 Chin. Phys. B 23 088902

    [11]

    Shi B Y, Liu J M 2012 IEEE Trans. Syst. Man Cy. B 42 1369

    [12]

    L T Y, Piao X F, Xie W Y, Huang S B 2012 Acta Phys. Sin. 61 170512 (in Chinese) [吕天阳, 朴秀峰, 谢文艳, 黄少滨 2012 61 170512]

    [13]

    Xiao Y D, Lao S Y, Hou L L, Bai L 2013 Acta Phys. Sin. 62 180201 (in Chinese) [肖延东, 老松杨, 侯绿林, 白亮 2013 62 180201]

    [14]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [15]

    Rinaldi S M, Peerenboom J P, Kelly T K 2001 IEEE Control Syst. 21 11

    [16]

    Gao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. Lett. 107 195701

    [17]

    Parshani R, Buldyrev S V, Havlin S 2010 Phys. Rev. Lett. 105 048701

    [18]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [19]

    Li W, Bashan A, Buldyrev S V, Stanley H E, Havlin S 2012 Phys. Rev. Lett. 108 228702

    [20]

    Gao J X, Buldyrev S V, Stanly H E, Hanlin S 2012 Nat. Phys. 8 40

    [21]

    Li G Y, Cheng B S, Zhang P, Li D Q 2013 J. Univ. Electron. Sci. Technol. China 42 23 (in Chinese) [李国颖, 成柏松, 张 鹏, 李大庆 2013 电子科技大学学报 42 23]

    [22]

    Huang X Q, Gao J X, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 065101

    [23]

    Zhou D, Agostino G D, Scala A, Stanley H E 2012 Phys. Rev. E 86 066103

    [24]

    Donges J F, Schultz H C H, Marwan N, Zou Y, Kurths J 2011 Eur. Phys. J. B 84 635

    [25]

    Shai S, Dobson S 2012 Phys. Rev. E 86 066120

    [26]

    Chen S M, Zou X Q, L H, Xu Q G 2014 Acta Phys. Sin. 63 028902 (in Chinese) [陈世明, 邹小群, 吕辉, 徐青刚 2014 63 028902]

  • [1] 高彦丽, 徐维南, 周杰, 陈世明. 二元双层耦合网络渗流行为分析.  , 2024, 73(16): 168901. doi: 10.7498/aps.73.20240454
    [2] 王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新. 相互依赖网络上级联故障鲁棒性悖论研究.  , 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [3] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究.  , 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [4] 严玉为, 蒋沅, 杨松青, 余荣斌, 洪成. 基于时间序列的网络失效模型.  , 2022, 71(8): 088901. doi: 10.7498/aps.71.20212106
    [5] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效.  , 2022, (): . doi: 10.7498/aps.71.20210850
    [6] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效.  , 2022, 71(11): 110505. doi: 10.7498/aps.70.20210850
    [7] 蒋文君, 刘润然, 范天龙, 刘霜霜, 吕琳媛. 多层网络级联失效的预防和恢复策略概述.  , 2020, 69(8): 088904. doi: 10.7498/aps.69.20192000
    [8] 韩伟涛, 伊鹏. 相依网络的条件依赖群逾渗.  , 2019, 68(7): 078902. doi: 10.7498/aps.68.20182258
    [9] 韩伟涛, 伊鹏, 马海龙, 张鹏, 田乐. 异质弱相依网络鲁棒性研究.  , 2019, 68(18): 186401. doi: 10.7498/aps.68.20190761
    [10] 吴佳键, 龚凯, 王聪, 王磊. 相依网络上基于相连边的择优恢复算法.  , 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526
    [11] 高彦丽, 陈世明. 一种全局同质化相依网络耦合模式.  , 2016, 65(14): 148901. doi: 10.7498/aps.65.148901
    [12] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述.  , 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [13] 彭兴钊, 姚宏, 杜军, 王哲, 丁超. 负荷作用下相依网络中的级联故障.  , 2015, 64(4): 048901. doi: 10.7498/aps.64.048901
    [14] 段东立, 战仁军. 基于相继故障信息的网络节点重要度演化机理分析.  , 2014, 63(6): 068902. doi: 10.7498/aps.63.068902
    [15] 欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡. 疾病传播与级联失效相互作用的研究:度不相关网络中疾病扩散条件的分析.  , 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [16] 袁铭. 带有层级结构的复杂网络级联失效模型.  , 2014, 63(22): 220501. doi: 10.7498/aps.63.220501
    [17] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究.  , 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [18] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究.  , 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [19] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制.  , 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [20] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型.  , 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
计量
  • 文章访问数:  7893
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-29
  • 修回日期:  2014-09-21
  • 刊出日期:  2015-02-05

/

返回文章
返回
Baidu
map