搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属氧化物基杂化型聚合物太阳电池研究

刘长文 周讯 岳文瑾 王命泰 邱泽亮 孟维利 陈俊伟 齐娟娟 董超

引用本文:
Citation:

金属氧化物基杂化型聚合物太阳电池研究

刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超

Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter

Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao
PDF
导出引用
  • 以有机共轭聚合物为电子给体和无机纳米结构为电子受体组成的杂化型聚合物太阳电池(HPSC), 是一类新型的光伏器件. HPSC将有机物和无机物的光学、电学和力学等性能集成在一起, 其最显著的优点体现在材料来源丰富、性能互补且可调控、易实现低成本组装及轻便等方面. 金属氧化物纳米结构具有环境友好、可见光区透明且易合成等特点, 是很有发展前景的电子受体材料. 本文首先简要介绍了HPSC电池的研究现状、工作原理、器件结构、和稳态及动态表征方法, 然后重点综述了在基于ZnO和TiO2纳米结构的HPSC方面的研究进展, 包括载流子传输动力学理论模型、高效电池材料与器件的设计和制备、及纳米结构特性相关的器件性能等. 最后, 对我们的研究成果进行了总结, 并展望了电池的后续研究方向和发展前景.
    Hybrid polymer-based solar cells (HPSCs) that use conjugate polymers as electron donor (D) and inorganic semiconductor nanocrystals as electron acceptor (A) are novel photovoltaic devices. HPSCs integrate the properties of organic polymer (flexibility, ease of film formation, high absorption coefficient) and inorganic nanostructures (high electron mobility, high electron affinity, and good stability), and have the extra advantages, such as the rich sources of synthesized nanostructures by wet chemistry, tunable and complementary properties of assembled components, solution-processibility on a large scale at low cost and light-weight, etc. Amongst various inorganic semiconductor materials, the nanostructured metal oxides are the promising electron acceptors for HPSCs, because they are environment-friendly, transparent in visible spectrum and easy to be synthesized. After a brief introduction to the current research status, working principles, device architecture, steady-state and dynamic characterizations of HPSCs, this paper mainly reviews our recent research advances in the HPSCs using ZnO and TiO2 nanostructures as main electron acceptor and transporter, with emphasis on the theoretical models for charge carrier transport dynamics, design and preparation of efficient materials and devices, and the device performance related with nanostructural characteristics. Finally, the main challenges in the development of efficient HPSCs in basic researches and practical applications are also discussed. The main conclusions from our studies are summarized as follows: (i) IMPS and IMVS are powerful dynamic photoelectrochemical methods for studying the charge transport dynamics in HPSCs, and our theoretical models enable the IMPS to serve as an effective tool for the mechanistic characterization and optimization of HPSC devices. (ii) Using a multicomponent photoactive layer with complementary properties is an effective strategy to achieve efficient HPSCs. (iii) Using the complementary property of components, enhancing the dissociation efficiency of excitons, and improving the transport properties of the acceptor channels with reduced energy loss to increase collection efficiency all are the effective measures to access a high photocurrent generation in HPSCs. (iv) The band levels of components in the photoactive layer of HPSCs are aligned into type II heterojunctions, in which the nanostructured component with the lowest conduction band edge acts as the main acceptor/transporter; the maximum open-circuit voltage (Voc) in HPSCs is determined by the energy difference between the highest occupied molecular orbital (HOMO) level of conjugated polymer and the conduction band edge of the main acceptor, but the Voc in practical devices correlates strongly with the quasi-Fermi levels of the electrons in the main acceptor and the holes in the polymer. While passivating the surface defects on the main acceptor, increasing spatial e-h separation, and enhancing the electron density in conduction band of the main acceptor will facilitate the increase in Voc. (v) There is no direct correlation among Voc, photogenerated voltage (Vph) and electron lifetime (τe), and they may change in the same or the opposite trend when the same or different factors affect them, therefore one should get insight into the intrinsic factors that influence them when discussing the changes in Voc, V_{ph} and τe that are subject to nanostructural characteristics.
    • 基金项目: 国家自然科学基金(批准号: 11274307, 11474286)、国家自然科学基金重大研究计划(批准号: 91333121)、国家自然科学基金青年科学基金(批准号: 51202002)和安徽省自然科学基金(批准号: 1308085ME70)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274307, 11474286), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91333121), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51202002), and the Natural Science Foundation of Anhui Province, China (Grant No. 1308085ME70).
    [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2013 Prog. Photovolt. Res. Appl. 21 827

    [2]

    Lewis N S 2007 Science 315 798

    [3]

    Coakley K M, McGehee M D 2004 Chem. Mater. 16 4533

    [4]

    Gnes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324

    [5]

    Thompson B C, Fréchet J M J 2008 Angew. Chem.-Int. Edit. 47 58

    [6]

    Huang Y, Kramer E J, Heeger A J, Bazan G C 2014 Chem. Rev. 114 7006

    [7]

    Heeger A J 2014 Adv. Mater. 26 10

    [8]

    Dou L, You J, Hong Z, Xu Z, Li G, Street R A, Yang Y 2013 Adv. Mater. 25 6642

    [9]

    Krebs F C, Fyenbo J, Tanenbaum D M, Gevorgyan S A, Andriessen R, van Remoortere B, Galagan Y, Jorgensen M 2011 Energy Environ. Sci. 4 4116

    [10]

    Service R F 2011 Science 332 293

    [11]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [12]

    Mor G K, Kim S, Paulose M, Varghese O K, Shankar K, Basham J, Grimes C A 2009 Nano Lett. 9 4250

    [13]

    Dayal S, Kopidakis N, Olson D C, Ginley D S, Rumbles G 2009 Nano Lett. 10 239

    [14]

    Chang J A, Rhee J H, Im S H, Lee Y H, Kim H J, Seok S I, Nazeeruddin M K, Grätzel M 2010 Nano Lett. 10 2609

    [15]

    Im S H, Lim C-S, Chang J A, Lee Y H, Maiti N, Kim H-J, Nazeeruddin M K, Grätzel M, Seok S I 2011 Nano Lett. 11 4789

    [16]

    Chang J A, Im S H, Lee Y H, Kim H J, Lim C S, Heo J H, Seok S I 2012 Nano Lett. 12 1863

    [17]

    Liu C, Qiu Z, Li F, Meng W, Yue W, Zhang F, Qiao Q, Wang, M 2014 Nano Energy DOI: 10.1016/j.nanoen.2014.09.028

    [18]

    Zhou Y, Eck M, Krger M 2010 Energy Environ. Sci. 3 1851

    [19]

    Reiss P, Couderc E, De Girolamo J, Pron A 2011 Nanoscale 3 446

    [20]

    Xu T, Qiao Q 2011 Energy Environ. Sci. 4 2700

    [21]

    Moule A J, Chang L, Thambidurai C, Vidu R, Stroeve P 2012 J. Mater. Chem. 22 2351

    [22]

    Wright M, Uddin A 2012 Sol Energy Mater. Sol. Cells 107 87

    [23]

    Fan X, Zhang M, Wang X, Yang F, Meng X 2013 J. Mater. Chem. A 1 8694

    [24]

    He M, Qiu F, Lin Z 2013 J. Phys. Chem. Lett. 4 1788

    [25]

    Gao F, Ren S, Wang J 2013 Energy Environ. Sci. 6 2020

    [26]

    Li S S, Chen C W 2013 J. Mater. Chem. A 1 10574

    [27]

    Patel J, Mighri F, Ajji A, Chaudhuri T K 2014 Nano Energy 5 36

    [28]

    Freitas J N, Goncalves A S, Nogueira A F 2014 Nanoscale 6 6371

    [29]

    Miranda P B, Moses D, Heeger A J 2001 Phys. Rev. B 64 081201

    [30]

    Gregg B A, Hanna M C 2003 J. Appl. Phys. 93 3605

    [31]

    Gregg B A 2003 J. Phys. Chem. B 107 4688

    [32]

    Dloczik L, Ileperuma O, Lauermann I, Peter L M, Ponomarev E A, Redmond G, Shaw N J, Uhlendorf I 1997 J. Phys. Chem. B 101 10281

    [33]

    Chen C, Peng R, Wu H, Wang M 2009 J. Phys. Chem. C 113 12608

    [34]

    de Jongh P E, Vanmaekelbergh D 1996 Phys. Rev. Lett. 77 3427

    [35]

    Haque S A, Tachibana Y, Klug D R, Durrant J R 1998 J. Phys. Chem. B 102 1745

    [36]

    Bisquert J, Zaban A, Salvador P 2002 J. Phys. Chem. B 106 8774

    [37]

    Kannan B, Castelino K, Majumdar A 2003 Nano Lett. 3 1729

    [38]

    Kirchartz T, Mattheis J, Rau U 2008 Phys. Rev. B 78 235320

    [39]

    Bi D, Wu F, Yue W, Guo Y, Shen W, Peng R, Wu H, Wang X, Wang M 2010 J. Phys. Chem. C 114 13846

    [40]

    Potscavage W J Jr, Sharma A, Kippelen B 2009 Acc. Chem. Res. 42 1758

    [41]

    Qi B, Wang J 2013 Phys. Chem. Chem. Phys. 15 8972

    [42]

    Schilinsky P, Waldauf C, Hauch J, Brabec C J 2004 J. Appl. Phys. 95 2816

    [43]

    Wu F, Yue W, Cui Q, Liu C, Qiu Z, Shen W, Zhang H, Wang M 2012 Sol. Energy 86 1459

    [44]

    Bi D, Wu F, Qu Q, Yue W, Cui Q, Shen W, Chen R, Liu C, Qiu Z, Wang M 2011 J. Phys. Chem. C 115 3745

    [45]

    Cui Q, Liu C, Wu F, Yue W, Qiu Z, Zhang H, Gao F, Shen W, Wang M 2013 J. Phys. Chem. C 117 5626

    [46]

    Wu F, Cui Q, Qiu Z, Liu C, Zhang H, Shen W, Wang M 2013 ACS Appl. Mater. Interfaces 5 3246

    [47]

    Rauh D, Wagenpfahl A, Deibel C, Dyakonov V 2011 Appl. Phys. Lett. 98 133301

    [48]

    Potscavage W J Jr, Yoo S, Kippelen B 2008 Appl. Phys. Lett. 93 193308

    [49]

    Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca J V 2010 Phys. Rev. B 81 125204

    [50]

    Ruankham P, Macaraig L, Sagawa T, Nakazumi H, Yoshikawa S 2011 J. Phys. Chem. C 115 23809

    [51]

    Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 93 163301

    [52]

    Jeong W I, Lee J, Park S Y, Kang J W, Kim J J 2011 Adv. Funct. Mater. 21 343

    [53]

    Liao K S, Yambem S D, Haldar A, Alley N J, Curran S A 2010 Energies 3 1212

    [54]

    Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C Y, Nazeeruddin M K, Grätzel M 2011 J. Am. Chem. Soc. 133 18042

    [55]

    Choi S, Potscavage W J, Kippelen B 2009 J. Appl. Phys. 106 054507

    [56]

    Dunn H K, Peter L M 2009 J. Phys. Chem. C 113 4726

    [57]

    Chen C, Wang M, Wang K 2009 J. Phys. Chem. C 113 1624

    [58]

    Geng H, Wang M, Han S, Peng R 2010 Sol. Energy Mater. Sol. Cells 94 547

    [59]

    Geng H, Guo Y, Peng R, Han S, Wang M 2010 Sol. Energy Mater. Sol. Cells 94 1293

    [60]

    Wu F, Shen W, Cui Q, Bi D, Yue W, Qu Q, Wang M 2010 J. Phys. Chem. C 114 20225

    [61]

    Peng R, Chen C, Shen W, Wang M, Guo Y, Geng H 2009 Acta Phys. Sin. 58 6582 (in Chinese) [彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟 2009 58 6582]

    [62]

    Krger J, Plass R, Grätzel M, Cameron P J, Peter L M 2003 J. Phys. Chem. B 107 7536

    [63]

    Chen C, Wu F, Geng1 H, Shen W, Wang M 2011 Nanoscale Res. Lett. 6 350

    [64]

    Takanezawa K, Hirota K, Wei Q S, Tajima K, Hashimoto K 2007 J. Phys. Chem. C 111 7218

    [65]

    Lin Y Y, Chu T H, Li S S, Chuang C H, Chang C H, Su W F, Chang C P, Chu M W, Chen C W 2009 J. Am. Chem. Soc. 131 3644

    [66]

    Xi J, Wiranwetchayan O, Zhang Q, Liang Z, Sun Y, Cao G 2012 J. Mater Sci: Mater. Electron. 23 1657

    [67]

    Yue W, Han S, Peng R, Shen W, Geng H, Wu F, Tao S, Wang M 2010 J. Mater. Chem. 20 7570

    [68]

    Yue W, Wu F, Liu C, Qiu Z, Cui Q, Zhang H, Gao F, Shen W, Qiao Q, Wang M 2013 Sol. Energy Mater. Sol. Cells 114 43

    [69]

    Ravirajan P, Peiró A M, Nazeeruddin M K, Graetzel M, Bradley D D C, Durrant J R, Nelson J 2006 J. Phys. Chem. B 110 7635

    [70]

    Lin Y Y, Lee Y Y, Chang L, Wu J J, Chen C W 2009 Appl. Phys. Lett. 94 063308

    [71]

    Liu Y, Scully S R, McGehee M D, Liu J, Luscombe C K, Fréchet J M J, Shaheen S E, Ginley D S 2006 J. Phys. Chem. B 110 3257

    [72]

    Qu Q, Geng H, Peng R, Cui Q, Gu X, Li F, Wang M 2010 Langmuir 26 9539

    [73]

    Greene L E, Law M, Yuhas B D, Yang P 2007 J. Phys. Chem. C 111 18451

    [74]

    Lee Y J, Davis R J, Lloyd M T, Provencio P P, Prasankumar R P, Hsu J W P 2010 IEEE J. Sel. Top. Quantum Electron. 16 1587

    [75]

    Wang L, Zhao D, Su Z, Li B, Zhang Z, Shen D 2011 J. Electrochem. Soc. 158 H804

    [76]

    Krger J, Bach U, Grätzel M 2000 Adv. Mater. 12 447

    [77]

    Goh C, Scully S R, McGehee M D 2007 J. Appl. Phys. 101 114503

    [78]

    Chen Z L, Zhang H, Du X H, Cheng X, Chen X G, Jiang Y Y, Yang B 2013 Energy Environ. Sci. 6 1597

    [79]

    Heeger H J, Sariciftci N S, Namdas E B (translated by Shuai Z G, Cao Y et al.) 2010 Semiconducting and Metallic Polymers (Beijing: Science Press) p17-28 (in Chinese) [Heeger H J, Sariciftci N S, Namdas E B (帅志刚, 曹镛等译)2010 半导性和金属性聚合物 (北京: 科学出版社)第17–28页]

    [80]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [81]

    Yin C, Pieper B, Stiller B, Kietzke T, Neher D 2007 Appl. Phys. Lett. 90 133502

    [82]

    Marsh R A, McNeill C R, Abrusci A, Campbell A R, Friend R H 2008 Nano Lett. 8 1393

    [83]

    Olson C, Shaheen S E, White M S, Mitchell W J, van Hest M F A M, Collins R T, Ginley D S 2007 Adv. Funct. Mater. 17 264

    [84]

    Schlichthörl G, Huang S Y, Sprague J, Frank A J 1997 J. Phys. Chem. B 101 8141

    [85]

    Adebanjo O, Maharjan P P, Adhikary P, Wang M, Yang S, Qiao Q 2013 Energy Environ. Sci. 6 3150

    [86]

    Ameri T, Li N, Brabec C J 2013 Energy Environ. Sci. 6 2390

    [87]

    Chen C C, Chang W H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y 2014 Adv. Mater. 26 5670

    [88]

    Winder C, Sariciftci N S 2004 J. Mater. Chem. 14 1077

    [89]

    Bundgaard E, Krebs F C 2007 Sol. Energy Mater. Sol. Cells 91 954

    [90]

    Li Y 2012 Acc. Chem. Res. 45 723

  • [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2013 Prog. Photovolt. Res. Appl. 21 827

    [2]

    Lewis N S 2007 Science 315 798

    [3]

    Coakley K M, McGehee M D 2004 Chem. Mater. 16 4533

    [4]

    Gnes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324

    [5]

    Thompson B C, Fréchet J M J 2008 Angew. Chem.-Int. Edit. 47 58

    [6]

    Huang Y, Kramer E J, Heeger A J, Bazan G C 2014 Chem. Rev. 114 7006

    [7]

    Heeger A J 2014 Adv. Mater. 26 10

    [8]

    Dou L, You J, Hong Z, Xu Z, Li G, Street R A, Yang Y 2013 Adv. Mater. 25 6642

    [9]

    Krebs F C, Fyenbo J, Tanenbaum D M, Gevorgyan S A, Andriessen R, van Remoortere B, Galagan Y, Jorgensen M 2011 Energy Environ. Sci. 4 4116

    [10]

    Service R F 2011 Science 332 293

    [11]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425

    [12]

    Mor G K, Kim S, Paulose M, Varghese O K, Shankar K, Basham J, Grimes C A 2009 Nano Lett. 9 4250

    [13]

    Dayal S, Kopidakis N, Olson D C, Ginley D S, Rumbles G 2009 Nano Lett. 10 239

    [14]

    Chang J A, Rhee J H, Im S H, Lee Y H, Kim H J, Seok S I, Nazeeruddin M K, Grätzel M 2010 Nano Lett. 10 2609

    [15]

    Im S H, Lim C-S, Chang J A, Lee Y H, Maiti N, Kim H-J, Nazeeruddin M K, Grätzel M, Seok S I 2011 Nano Lett. 11 4789

    [16]

    Chang J A, Im S H, Lee Y H, Kim H J, Lim C S, Heo J H, Seok S I 2012 Nano Lett. 12 1863

    [17]

    Liu C, Qiu Z, Li F, Meng W, Yue W, Zhang F, Qiao Q, Wang, M 2014 Nano Energy DOI: 10.1016/j.nanoen.2014.09.028

    [18]

    Zhou Y, Eck M, Krger M 2010 Energy Environ. Sci. 3 1851

    [19]

    Reiss P, Couderc E, De Girolamo J, Pron A 2011 Nanoscale 3 446

    [20]

    Xu T, Qiao Q 2011 Energy Environ. Sci. 4 2700

    [21]

    Moule A J, Chang L, Thambidurai C, Vidu R, Stroeve P 2012 J. Mater. Chem. 22 2351

    [22]

    Wright M, Uddin A 2012 Sol Energy Mater. Sol. Cells 107 87

    [23]

    Fan X, Zhang M, Wang X, Yang F, Meng X 2013 J. Mater. Chem. A 1 8694

    [24]

    He M, Qiu F, Lin Z 2013 J. Phys. Chem. Lett. 4 1788

    [25]

    Gao F, Ren S, Wang J 2013 Energy Environ. Sci. 6 2020

    [26]

    Li S S, Chen C W 2013 J. Mater. Chem. A 1 10574

    [27]

    Patel J, Mighri F, Ajji A, Chaudhuri T K 2014 Nano Energy 5 36

    [28]

    Freitas J N, Goncalves A S, Nogueira A F 2014 Nanoscale 6 6371

    [29]

    Miranda P B, Moses D, Heeger A J 2001 Phys. Rev. B 64 081201

    [30]

    Gregg B A, Hanna M C 2003 J. Appl. Phys. 93 3605

    [31]

    Gregg B A 2003 J. Phys. Chem. B 107 4688

    [32]

    Dloczik L, Ileperuma O, Lauermann I, Peter L M, Ponomarev E A, Redmond G, Shaw N J, Uhlendorf I 1997 J. Phys. Chem. B 101 10281

    [33]

    Chen C, Peng R, Wu H, Wang M 2009 J. Phys. Chem. C 113 12608

    [34]

    de Jongh P E, Vanmaekelbergh D 1996 Phys. Rev. Lett. 77 3427

    [35]

    Haque S A, Tachibana Y, Klug D R, Durrant J R 1998 J. Phys. Chem. B 102 1745

    [36]

    Bisquert J, Zaban A, Salvador P 2002 J. Phys. Chem. B 106 8774

    [37]

    Kannan B, Castelino K, Majumdar A 2003 Nano Lett. 3 1729

    [38]

    Kirchartz T, Mattheis J, Rau U 2008 Phys. Rev. B 78 235320

    [39]

    Bi D, Wu F, Yue W, Guo Y, Shen W, Peng R, Wu H, Wang X, Wang M 2010 J. Phys. Chem. C 114 13846

    [40]

    Potscavage W J Jr, Sharma A, Kippelen B 2009 Acc. Chem. Res. 42 1758

    [41]

    Qi B, Wang J 2013 Phys. Chem. Chem. Phys. 15 8972

    [42]

    Schilinsky P, Waldauf C, Hauch J, Brabec C J 2004 J. Appl. Phys. 95 2816

    [43]

    Wu F, Yue W, Cui Q, Liu C, Qiu Z, Shen W, Zhang H, Wang M 2012 Sol. Energy 86 1459

    [44]

    Bi D, Wu F, Qu Q, Yue W, Cui Q, Shen W, Chen R, Liu C, Qiu Z, Wang M 2011 J. Phys. Chem. C 115 3745

    [45]

    Cui Q, Liu C, Wu F, Yue W, Qiu Z, Zhang H, Gao F, Shen W, Wang M 2013 J. Phys. Chem. C 117 5626

    [46]

    Wu F, Cui Q, Qiu Z, Liu C, Zhang H, Shen W, Wang M 2013 ACS Appl. Mater. Interfaces 5 3246

    [47]

    Rauh D, Wagenpfahl A, Deibel C, Dyakonov V 2011 Appl. Phys. Lett. 98 133301

    [48]

    Potscavage W J Jr, Yoo S, Kippelen B 2008 Appl. Phys. Lett. 93 193308

    [49]

    Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca J V 2010 Phys. Rev. B 81 125204

    [50]

    Ruankham P, Macaraig L, Sagawa T, Nakazumi H, Yoshikawa S 2011 J. Phys. Chem. C 115 23809

    [51]

    Gupta D, Bag M, Narayan K S 2008 Appl. Phys. Lett. 93 163301

    [52]

    Jeong W I, Lee J, Park S Y, Kang J W, Kim J J 2011 Adv. Funct. Mater. 21 343

    [53]

    Liao K S, Yambem S D, Haldar A, Alley N J, Curran S A 2010 Energies 3 1212

    [54]

    Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C Y, Nazeeruddin M K, Grätzel M 2011 J. Am. Chem. Soc. 133 18042

    [55]

    Choi S, Potscavage W J, Kippelen B 2009 J. Appl. Phys. 106 054507

    [56]

    Dunn H K, Peter L M 2009 J. Phys. Chem. C 113 4726

    [57]

    Chen C, Wang M, Wang K 2009 J. Phys. Chem. C 113 1624

    [58]

    Geng H, Wang M, Han S, Peng R 2010 Sol. Energy Mater. Sol. Cells 94 547

    [59]

    Geng H, Guo Y, Peng R, Han S, Wang M 2010 Sol. Energy Mater. Sol. Cells 94 1293

    [60]

    Wu F, Shen W, Cui Q, Bi D, Yue W, Qu Q, Wang M 2010 J. Phys. Chem. C 114 20225

    [61]

    Peng R, Chen C, Shen W, Wang M, Guo Y, Geng H 2009 Acta Phys. Sin. 58 6582 (in Chinese) [彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟 2009 58 6582]

    [62]

    Krger J, Plass R, Grätzel M, Cameron P J, Peter L M 2003 J. Phys. Chem. B 107 7536

    [63]

    Chen C, Wu F, Geng1 H, Shen W, Wang M 2011 Nanoscale Res. Lett. 6 350

    [64]

    Takanezawa K, Hirota K, Wei Q S, Tajima K, Hashimoto K 2007 J. Phys. Chem. C 111 7218

    [65]

    Lin Y Y, Chu T H, Li S S, Chuang C H, Chang C H, Su W F, Chang C P, Chu M W, Chen C W 2009 J. Am. Chem. Soc. 131 3644

    [66]

    Xi J, Wiranwetchayan O, Zhang Q, Liang Z, Sun Y, Cao G 2012 J. Mater Sci: Mater. Electron. 23 1657

    [67]

    Yue W, Han S, Peng R, Shen W, Geng H, Wu F, Tao S, Wang M 2010 J. Mater. Chem. 20 7570

    [68]

    Yue W, Wu F, Liu C, Qiu Z, Cui Q, Zhang H, Gao F, Shen W, Qiao Q, Wang M 2013 Sol. Energy Mater. Sol. Cells 114 43

    [69]

    Ravirajan P, Peiró A M, Nazeeruddin M K, Graetzel M, Bradley D D C, Durrant J R, Nelson J 2006 J. Phys. Chem. B 110 7635

    [70]

    Lin Y Y, Lee Y Y, Chang L, Wu J J, Chen C W 2009 Appl. Phys. Lett. 94 063308

    [71]

    Liu Y, Scully S R, McGehee M D, Liu J, Luscombe C K, Fréchet J M J, Shaheen S E, Ginley D S 2006 J. Phys. Chem. B 110 3257

    [72]

    Qu Q, Geng H, Peng R, Cui Q, Gu X, Li F, Wang M 2010 Langmuir 26 9539

    [73]

    Greene L E, Law M, Yuhas B D, Yang P 2007 J. Phys. Chem. C 111 18451

    [74]

    Lee Y J, Davis R J, Lloyd M T, Provencio P P, Prasankumar R P, Hsu J W P 2010 IEEE J. Sel. Top. Quantum Electron. 16 1587

    [75]

    Wang L, Zhao D, Su Z, Li B, Zhang Z, Shen D 2011 J. Electrochem. Soc. 158 H804

    [76]

    Krger J, Bach U, Grätzel M 2000 Adv. Mater. 12 447

    [77]

    Goh C, Scully S R, McGehee M D 2007 J. Appl. Phys. 101 114503

    [78]

    Chen Z L, Zhang H, Du X H, Cheng X, Chen X G, Jiang Y Y, Yang B 2013 Energy Environ. Sci. 6 1597

    [79]

    Heeger H J, Sariciftci N S, Namdas E B (translated by Shuai Z G, Cao Y et al.) 2010 Semiconducting and Metallic Polymers (Beijing: Science Press) p17-28 (in Chinese) [Heeger H J, Sariciftci N S, Namdas E B (帅志刚, 曹镛等译)2010 半导性和金属性聚合物 (北京: 科学出版社)第17–28页]

    [80]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [81]

    Yin C, Pieper B, Stiller B, Kietzke T, Neher D 2007 Appl. Phys. Lett. 90 133502

    [82]

    Marsh R A, McNeill C R, Abrusci A, Campbell A R, Friend R H 2008 Nano Lett. 8 1393

    [83]

    Olson C, Shaheen S E, White M S, Mitchell W J, van Hest M F A M, Collins R T, Ginley D S 2007 Adv. Funct. Mater. 17 264

    [84]

    Schlichthörl G, Huang S Y, Sprague J, Frank A J 1997 J. Phys. Chem. B 101 8141

    [85]

    Adebanjo O, Maharjan P P, Adhikary P, Wang M, Yang S, Qiao Q 2013 Energy Environ. Sci. 6 3150

    [86]

    Ameri T, Li N, Brabec C J 2013 Energy Environ. Sci. 6 2390

    [87]

    Chen C C, Chang W H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y 2014 Adv. Mater. 26 5670

    [88]

    Winder C, Sariciftci N S 2004 J. Mater. Chem. 14 1077

    [89]

    Bundgaard E, Krebs F C 2007 Sol. Energy Mater. Sol. Cells 91 954

    [90]

    Li Y 2012 Acc. Chem. Res. 45 723

  • [1] 孙震, 吕项, 李盛, 安忠. 绝热表象下非绝热分子动力学方法.  , 2024, 73(14): 140201. doi: 10.7498/aps.73.20240401
    [2] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池.  , 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应.  , 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [4] 任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望.  , 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [5] 石莹, 李耀, 周海涛, 陈瑞云, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 一种共轭聚合物单分子发色团吸收和发射特性动态演变过程的实时测量.  , 2019, 68(4): 048201. doi: 10.7498/aps.68.20181986
    [6] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性.  , 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [7] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展.  , 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [8] 秦亚强, 陈瑞云, 石莹, 周海涛, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 共轭聚合物单分子构象和能量转移特性研究.  , 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [9] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述.  , 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [10] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究.  , 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [11] 许中华, 陈卫兵, 叶玮琼, 杨伟丰. 聚合物和小分子叠层结构有机太阳电池研究.  , 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [12] 李冬梅, 袁晓娟, 周加强. 共轭聚合物中链内无序效应对极化子输运的影响.  , 2013, 62(16): 167202. doi: 10.7498/aps.62.167202
    [13] 刘伟庆, 寇东星, 胡林华, 戴松元. 染料敏化太阳电池内部光路折转对电子传输特性的影响.  , 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [14] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究.  , 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [15] 周春兰, 励旭东, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 氧化随机织构硅表面对单晶硅太阳电池性能的影响研究.  , 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [16] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响.  , 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [17] 徐苗, 彭俊彪. 制膜工艺对聚合物太阳电池性能影响的研究.  , 2010, 59(3): 2131-2136. doi: 10.7498/aps.59.2131
    [18] 彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟. 非晶/结晶共混对聚合物光伏电池性能的影响.  , 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [19] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究.  , 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [20] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究.  , 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
计量
  • 文章访问数:  7523
  • PDF下载量:  704
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-22
  • 修回日期:  2014-11-27
  • 刊出日期:  2015-02-05

/

返回文章
返回
Baidu
map