搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

El-Nabulsi动力学模型下非Chetaev型非完整系统的精确不变量与绝热不变量

陈菊 张毅

引用本文:
Citation:

El-Nabulsi动力学模型下非Chetaev型非完整系统的精确不变量与绝热不变量

陈菊, 张毅

Exact invariants and adiabatic invariants for nonholonomic systems in non-Chetaev's type based on El-Nabulsi dynamical models

Chen Ju, Zhang Yi
PDF
导出引用
  • 研究El-Nabulsi动力学模型下非Chetaev型非完整系统精确不变量与绝热不变量问题. 首先, 导出El-Nabulsi-d'Alembert-Lagrange原理并建立系统的运动微分方程. 其次, 建立El-Nabulsi模型下未受扰动的非Chetaev 型非完整系统的Noether对称性与Noether对称性导致的精确不变量之间的关系; 再次, 引入力学系统的绝热不变量概念, 研究受小扰动作用下非Chetaev型非完整系统Noether对称性的摄动导致绝热不变量问题, 给出了绝热不变量存在的条件及其形式. 作为特例, 本文讨论了El-Nabulsi模型下Chetaev型非完整系统的精确不变量与绝热不变量问题. 最后分别给出非Chetaev型和Chetaev型两种约束下的算例以说明结果的应用.
    In this paper, the problem of exact invariants and adiabatic invariants for nonholonomic system in non-Chetaev's type based on the El-Nabulsi dynamical model is studied. First, the El-Nabulsi-d'Alembert-Lagrange principle is deduced and the differential equations of motion of the system are established. Then, the relation between the Noether symmetry and the exact invariant that is led directly by the symmetry for undisturbed nonholonomic system in non-Chetaev's type is given. Furthermore, by introducing the concept of high-order adiabatic invariant of a mechanical system, the conditions that the perturbation of symmetry leads to the adiabatic invariant and its formulation are studied for the nonholonomic system in non-Chetaev's type under the action of small disturbance. As a special case, the problem of the exact invariants and the adiabatic invariants for the nonholonomic system in Chetaev's type in El-Nabulsi model is discussed. At the end of the paper, two examples for the nonholonomic systems in non-Chetaev's type constraints and also the Chetaev's type constraints are given respectively to show the application of the methods and the results of this paper.
    • 基金项目: 国家自然科学基金(批准号: 10972151, 11272227), 江苏省普通高级研究生科研创新计划(批准号: CXLX13_855) 和苏州科技学院研究生科研创新计划(批准号: SKCX13S_050)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.10972151, 11272227), the Scientific Research and Innovation Program for the Graduate Students in Institution of Higher Education of Jiangsu Province, China (Grant No. CXLX13-855), and the Scientific Research and Innovation Program for the Graduate Students of Suzhou University of Science and Technology, China (Grant No. SKCX13S-050).
    [1]

    Mei F X 1987 Researches on Nonholonomic Dynamics (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔1987非完整动力学研究(北京: 北京工业学院出版社)]

    [2]

    Bugers J M 1917 Ann. Phys. 357 195

    [3]

    Djuki D S 1981 Int. J. Non-Linear Mech. 16 489

    [4]

    Bulanov S V, Shasharina S G 1992 Nucl. Fusion 32 1531

    [5]

    Notte J, Fajans J, Chu R, Wurtele J S 1993 Phys. Rev. Lett. 70 3900

    [6]

    Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) p164 (in Chinese) [赵跃宇, 梅凤翔1999力学系统的对称性与守恒量(北京: 科学出版社)第164页]

    [7]

    Zhao Y Y, Mei F X 1996 Acta Mech. Sin. 28 207 (in Chinese) [赵跃宇, 梅凤翔 1996 力学学报 28 207]

    [8]

    Chen X W, Wang X M, Wang M Q 2004 Chin. Phys. 13 2003

    [9]

    Fu J L, Chen L Q 2004 Phys. Lett. A 324 95

    [10]

    Qiao Y F, Li R J, Sun D N 2005 Chin. Phys. 14 1919

    [11]

    Chen X W, Li Y M 2005 Chin. Phys. 14 663

    [12]

    Chen X W, Liu C M, Li Y M 2006 Chin. Phys. 15 470

    [13]

    Luo S K, Chen X W, Guo Y X 2007 Chin. Phys. 16 3176

    [14]

    Luo S k, Guo Y X 2007 Commun. Theor. Phys. 47 25

    [15]

    Ding N, Fang J H 2009 Acta Phys. Sin. 58 7440 (in Chinese) [丁宁, 方建会 2009 58 7440]

    [16]

    El-Nabulsi A R 2005 Fizika A 14 289

    [17]

    El-Nabulsi A R 2005 Int. J. Appl. Math. 17 299

    [18]

    El-Nabulsi A R and Torres D F M 2008 J. Math. Phys. 49 053521

    [19]

    El-Nabuls A R 2007 Math. Methods Appl. Sci. 30 1931

    [20]

    El-Nabulsi A R 2009 Chaos Sol. Fract. 42 52

    [21]

    El-Nabulsi A R, Dzenite A I, Torres D F M 2006 Bound Field Compu. Simu. 48 189

    [22]

    El-Nabulsi A R 2013 Qual. Theory Dyn. Syst. 12 273

    [23]

    El-Nabulsi A R 2007 Rom. J. Phys. 52 705

    [24]

    El-Nabulsi A R 2007 Rom. Rep. Phys. 59 759

    [25]

    Zhang Y 2013 Acta Phys. Sin. 62 164501 (in Chinese) [张毅 2013 62 164501]

    [26]

    Chen J, Zhang Y 2014 Acta Phys. Sin. 63 104501 (in Chinese) [陈菊, 张毅 2014 63 104501]

    [27]

    Chen J, Zhang Y 2014 Nonlinear Dyn. 77 353

    [28]

    Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔1985非完整系统力学基础(北京: 北京工业学院出版社)]

    [29]

    Mei F X, Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press)

  • [1]

    Mei F X 1987 Researches on Nonholonomic Dynamics (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔1987非完整动力学研究(北京: 北京工业学院出版社)]

    [2]

    Bugers J M 1917 Ann. Phys. 357 195

    [3]

    Djuki D S 1981 Int. J. Non-Linear Mech. 16 489

    [4]

    Bulanov S V, Shasharina S G 1992 Nucl. Fusion 32 1531

    [5]

    Notte J, Fajans J, Chu R, Wurtele J S 1993 Phys. Rev. Lett. 70 3900

    [6]

    Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) p164 (in Chinese) [赵跃宇, 梅凤翔1999力学系统的对称性与守恒量(北京: 科学出版社)第164页]

    [7]

    Zhao Y Y, Mei F X 1996 Acta Mech. Sin. 28 207 (in Chinese) [赵跃宇, 梅凤翔 1996 力学学报 28 207]

    [8]

    Chen X W, Wang X M, Wang M Q 2004 Chin. Phys. 13 2003

    [9]

    Fu J L, Chen L Q 2004 Phys. Lett. A 324 95

    [10]

    Qiao Y F, Li R J, Sun D N 2005 Chin. Phys. 14 1919

    [11]

    Chen X W, Li Y M 2005 Chin. Phys. 14 663

    [12]

    Chen X W, Liu C M, Li Y M 2006 Chin. Phys. 15 470

    [13]

    Luo S K, Chen X W, Guo Y X 2007 Chin. Phys. 16 3176

    [14]

    Luo S k, Guo Y X 2007 Commun. Theor. Phys. 47 25

    [15]

    Ding N, Fang J H 2009 Acta Phys. Sin. 58 7440 (in Chinese) [丁宁, 方建会 2009 58 7440]

    [16]

    El-Nabulsi A R 2005 Fizika A 14 289

    [17]

    El-Nabulsi A R 2005 Int. J. Appl. Math. 17 299

    [18]

    El-Nabulsi A R and Torres D F M 2008 J. Math. Phys. 49 053521

    [19]

    El-Nabuls A R 2007 Math. Methods Appl. Sci. 30 1931

    [20]

    El-Nabulsi A R 2009 Chaos Sol. Fract. 42 52

    [21]

    El-Nabulsi A R, Dzenite A I, Torres D F M 2006 Bound Field Compu. Simu. 48 189

    [22]

    El-Nabulsi A R 2013 Qual. Theory Dyn. Syst. 12 273

    [23]

    El-Nabulsi A R 2007 Rom. J. Phys. 52 705

    [24]

    El-Nabulsi A R 2007 Rom. Rep. Phys. 59 759

    [25]

    Zhang Y 2013 Acta Phys. Sin. 62 164501 (in Chinese) [张毅 2013 62 164501]

    [26]

    Chen J, Zhang Y 2014 Acta Phys. Sin. 63 104501 (in Chinese) [陈菊, 张毅 2014 63 104501]

    [27]

    Chen J, Zhang Y 2014 Nonlinear Dyn. 77 353

    [28]

    Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔1985非完整系统力学基础(北京: 北京工业学院出版社)]

    [29]

    Mei F X, Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press)

  • [1] 徐鑫鑫, 张毅. 分数阶非保守Lagrange系统的一类新型绝热不变量.  , 2020, 69(22): 220401. doi: 10.7498/aps.69.20200488
    [2] 陈菊, 张毅. El-Nabulsi动力学模型下Birkhoff系统Noether对称性的摄动与绝热不变量.  , 2014, 63(10): 104501. doi: 10.7498/aps.63.104501
    [3] 张毅. 非保守动力学系统Noether对称性的摄动与绝热不变量.  , 2013, 62(16): 164501. doi: 10.7498/aps.62.164501
    [4] 王肖肖, 张美玲, 韩月林, 贾利群. Chetaev型非完整约束相对运动动力学系统Nielsen方程的Mei对称性和Mei守恒量.  , 2012, 61(20): 200203. doi: 10.7498/aps.61.200203
    [5] 李元成, 夏丽莉, 王小明. 具有非Chetaev型非完整约束的机电系统的统一对称性.  , 2009, 58(10): 6732-6736. doi: 10.7498/aps.58.6732
    [6] 丁宁, 方建会. 非完整力学系统Mei对称性的摄动及其导致的一类新型Mei绝热不变量.  , 2009, 58(11): 7440-7446. doi: 10.7498/aps.58.7440
    [7] 张毅, 葛伟宽. 非Chetaev型非完整系统的Lagrange对称性与守恒量.  , 2009, 58(11): 7447-7451. doi: 10.7498/aps.58.7447
    [8] 罗绍凯. Lagrange系统一类新型的非Noether绝热不变量——Lutzky型绝热不变量.  , 2007, 56(10): 5580-5584. doi: 10.7498/aps.56.5580
    [9] 张 毅. 事件空间中完整系统的Lie对称性与绝热不变量.  , 2007, 56(6): 3054-3059. doi: 10.7498/aps.56.3054
    [10] 荆宏星, 李元成, 夏丽莉. 变质量单面完整约束系统Lie对称性的摄动与广义Hojman型绝热不变量.  , 2007, 56(6): 3043-3049. doi: 10.7498/aps.56.3043
    [11] 张 毅. 相空间中离散力学系统对称性的摄动与Hojman型绝热不变量.  , 2007, 56(4): 1855-1859. doi: 10.7498/aps.56.1855
    [12] 夏丽莉, 李元成. 相空间中非完整可控力学系统的对称性摄动与绝热不变量.  , 2007, 56(11): 6183-6187. doi: 10.7498/aps.56.6183
    [13] 张 毅. Birkhoff系统的一类新型绝热不变量.  , 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [14] 张 毅, 范存新, 梅凤翔. Lagrange系统对称性的摄动与Hojman型绝热不变量.  , 2006, 55(7): 3237-3240. doi: 10.7498/aps.55.3237
    [15] 张 毅. 非保守力和非完整约束对Hamilton系统Lie对称性的影响.  , 2003, 52(6): 1326-1331. doi: 10.7498/aps.52.1326
    [16] 张 毅, 梅凤翔. 广义经典力学系统对称性的摄动与绝热不变量.  , 2003, 52(10): 2368-2372. doi: 10.7498/aps.52.2368
    [17] 傅景礼, 陈立群, 谢凤萍. 相对论性Birkhoff系统的对称性摄动及其逆问题.  , 2003, 52(11): 2664-2670. doi: 10.7498/aps.52.2664
    [18] 张毅. 约束哈密顿系统在相空间中的精确不变量与绝热不变量.  , 2002, 51(11): 2417-2422. doi: 10.7498/aps.51.2417
    [19] 张毅. 单面约束Birkhoff系统对称性的摄动与绝热不变量.  , 2002, 51(8): 1666-1670. doi: 10.7498/aps.51.1666
    [20] 乔永芬, 李仁杰, 赵淑红. 高维增广相空间中广义力学系统的对称性和不变量.  , 2001, 50(5): 811-815. doi: 10.7498/aps.50.811
计量
  • 文章访问数:  5677
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-11
  • 修回日期:  2014-08-11
  • 刊出日期:  2015-02-05

/

返回文章
返回
Baidu
map