搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含活性剂液滴在倾斜粗糙壁面上的铺展稳定性

李春曦 陈朋强 叶学民

引用本文:
Citation:

含活性剂液滴在倾斜粗糙壁面上的铺展稳定性

李春曦, 陈朋强, 叶学民

Stability of surfactant-laden droplet spreading over an inclined heterogeneous substrate

Li Chun-Xi, Chen Peng-Qiang, Ye Xue-Min
PDF
导出引用
  • 针对含非溶性活性剂液滴在倾斜粗糙壁面上的铺展过程, 应用润滑理论推导出基态和扰动态下液膜厚度和活性剂浓度的演化方程组, 基于非模态理论研究了液滴铺展的稳定性特征, 探讨了相关参数的影响及其内在机理. 研究表明: 液膜厚度和活性剂浓度扰动量均呈现双驼峰型变化, 且峰值位于液滴底部凹陷处; 随扰动波数k增加, 最易失稳区域由液滴底部右侧凹陷处移至左侧凹陷, 壁面结构的影响逐渐减弱, 液滴铺展历程趋于稳定; 增加壁面倾角θ 将导致液滴铺展不稳定性加剧, 增大壁面高度D和壁面波数k0均导致液滴铺展稳定性先增强后减弱; 随毛细数C减小, 液滴铺展稳定性下降, 重力的影响逐渐突显, 扰动量最大值呈现先增大后减小的变化趋势.
    For the spreading of a droplet covered with insoluble surfactant over an inclined random heterogeneous substrate, the base state and disturbance evolution equations for the film thickness and surfactant concentration are derived using the lubrication theory. Stability of the droplet spreading on the heterogeneous substrates, and effects of dimensionless parameters as well as the internal mechanism are investigated based on the non-modal stability theory. Results show that the disturbances of film thickness and surfactant concentration exihibit a double-hump shape and the crests lie in thinning regions at the bottom of the droplet. With increasing disturbance wave number, the stability of the droplet spreading is enhanced, but the maximal disturbance transfers from the right-side to the left-side of the droplet bottom. Increasing inclined angle leads to severe instability distinctly. Improving topographical height or increasing wave number of the substrate leads the spreading stability to firstly enhance and then to weaken. The droplet evolution displays an unstable spreading under smaller capillary number, with the maximum disturbance to be increasing before decreasing.
    • 基金项目: 国家自然科学基金(批准号: 10972077, 11202079)和中央高校基本科研业务费(批准号: 13MS97)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10972077, 11202079), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 13MS97).
    [1]

    Hamraoui A, Cachile M, Poulard C, Cazabat A M 2004 Colloids Surf. A 250 215

    [2]

    Matar O K 2002 Phys. Fluids 14 4216

    [3]

    Warner M R E, Craster R V, Matar O K 2004 Phys. Fluids 16 2933

    [4]

    Edmonstone B D, Matar O K, Craster R V 2005 Physica D 209 62

    [5]

    Mavromoustaki A, Matar O K, Craster R V 2012 J. Colloid Interface Sci. 371 121

    [6]

    Ye X M, Jiang K, Shen L, Li C X 2013 Journal of Theoretical and Applied Mechanics 45 681 (in Chinese) [叶学民, 姜凯, 沈雷, 李春曦 2013 力学学报 45 681]

    [7]

    Hu G H 2005 Phys. Fluids A 17 088105

    [8]

    Wang W, Li Z X, Guo Z Y 2003 J. Eng. Thermophys. 24 85 (in Chinese) [王玮, 李志信, 过增元 2003 工程热 24 85]

    [9]

    Gerbig Y B, Phani A R, Haefke H 2005 Appl. Surf. Sci. 242 251

    [10]

    Craster R V, Matar O K 2009 Rev. Mod. Phys. 81 1131

    [11]

    Pang H Y, Zhang X F, Zhang H Y, Du F P 2006 Chin. J. Pestic. Sci. 8 157 (in Chinese) [庞红宇, 张现峰, 张红艳, 杜凤沛 2006 农药学学报 8 157]

    [12]

    Lee K S, Ivanova N, Starov V M Hilal N, Dutschk V 2008 Adv. Colloid Interfac. 244 54

    [13]

    Kalliadasis S, Bielarz C, Homsy G M 2000 Phys. Fluids 12 1889

    [14]

    Nonomura Y, Morita Y, Hikima T, Seino E, Chida S, Mayama H 2010 Langmuir 26 16150

    [15]

    Liu M, Wang S L, Wu Z R 2014 Acta Phys. Sin. 63 154702 (in Chinese) [刘梅, 王松岭, 吴正人 2014 63 154702]

    [16]

    Tseluiko D, Blyth M G, Papageorgiou D T 2011 J. Eng. Math. 69 169

    [17]

    Fischer B J, Troian S M 2003 Phys. Rev. B 67 016309

    [18]

    Nouar C, Kabouya N, Duesk J 2007 Journal of Fluid Mechanics 577 211.

    [19]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 174702 (in Chinese) [李春曦, 裴建军, 叶学民 2013 62 174702]

    [20]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 214704 (in Chinese) [李春曦, 裴建军, 叶学民 2013 62 214704]

    [21]

    Zhao Y P 2012 Physical Mechanics of Surface and Interface (Beijing: Science Press)pp185-186m (in Chinese) [赵亚溥 2012 表面与界面物理力学(北京: 科学出版社)第185–186页]

    [22]

    Edmonstone B D, Matar O K, Craster R V 2004 J. Eng. Math. 50 141

    [23]

    Zhou H, Zhao G F 2003 Hydrodynamic Stability (Beijing: National Defense Press)pp2-4m (in Chinese) [周恒, 赵耕夫 2003 流动稳定性(北京: 国防工业出版社)第2–4页]

    [24]

    Warner M R E, Craster R V, Matar O K 2004 J. Fluid Mech. 510 169

    [25]

    Sadiq M R, Tatiana G R, Stephan P 2012 Phys. Fluids 24 014104

    [26]

    Li C X, Pei J J, Ye X M 2013 CIESC J. 64 3308 (in Chinese) [李春曦, 裴建军, 叶学民 2013 化工学报 64 3308]

  • [1]

    Hamraoui A, Cachile M, Poulard C, Cazabat A M 2004 Colloids Surf. A 250 215

    [2]

    Matar O K 2002 Phys. Fluids 14 4216

    [3]

    Warner M R E, Craster R V, Matar O K 2004 Phys. Fluids 16 2933

    [4]

    Edmonstone B D, Matar O K, Craster R V 2005 Physica D 209 62

    [5]

    Mavromoustaki A, Matar O K, Craster R V 2012 J. Colloid Interface Sci. 371 121

    [6]

    Ye X M, Jiang K, Shen L, Li C X 2013 Journal of Theoretical and Applied Mechanics 45 681 (in Chinese) [叶学民, 姜凯, 沈雷, 李春曦 2013 力学学报 45 681]

    [7]

    Hu G H 2005 Phys. Fluids A 17 088105

    [8]

    Wang W, Li Z X, Guo Z Y 2003 J. Eng. Thermophys. 24 85 (in Chinese) [王玮, 李志信, 过增元 2003 工程热 24 85]

    [9]

    Gerbig Y B, Phani A R, Haefke H 2005 Appl. Surf. Sci. 242 251

    [10]

    Craster R V, Matar O K 2009 Rev. Mod. Phys. 81 1131

    [11]

    Pang H Y, Zhang X F, Zhang H Y, Du F P 2006 Chin. J. Pestic. Sci. 8 157 (in Chinese) [庞红宇, 张现峰, 张红艳, 杜凤沛 2006 农药学学报 8 157]

    [12]

    Lee K S, Ivanova N, Starov V M Hilal N, Dutschk V 2008 Adv. Colloid Interfac. 244 54

    [13]

    Kalliadasis S, Bielarz C, Homsy G M 2000 Phys. Fluids 12 1889

    [14]

    Nonomura Y, Morita Y, Hikima T, Seino E, Chida S, Mayama H 2010 Langmuir 26 16150

    [15]

    Liu M, Wang S L, Wu Z R 2014 Acta Phys. Sin. 63 154702 (in Chinese) [刘梅, 王松岭, 吴正人 2014 63 154702]

    [16]

    Tseluiko D, Blyth M G, Papageorgiou D T 2011 J. Eng. Math. 69 169

    [17]

    Fischer B J, Troian S M 2003 Phys. Rev. B 67 016309

    [18]

    Nouar C, Kabouya N, Duesk J 2007 Journal of Fluid Mechanics 577 211.

    [19]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 174702 (in Chinese) [李春曦, 裴建军, 叶学民 2013 62 174702]

    [20]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 214704 (in Chinese) [李春曦, 裴建军, 叶学民 2013 62 214704]

    [21]

    Zhao Y P 2012 Physical Mechanics of Surface and Interface (Beijing: Science Press)pp185-186m (in Chinese) [赵亚溥 2012 表面与界面物理力学(北京: 科学出版社)第185–186页]

    [22]

    Edmonstone B D, Matar O K, Craster R V 2004 J. Eng. Math. 50 141

    [23]

    Zhou H, Zhao G F 2003 Hydrodynamic Stability (Beijing: National Defense Press)pp2-4m (in Chinese) [周恒, 赵耕夫 2003 流动稳定性(北京: 国防工业出版社)第2–4页]

    [24]

    Warner M R E, Craster R V, Matar O K 2004 J. Fluid Mech. 510 169

    [25]

    Sadiq M R, Tatiana G R, Stephan P 2012 Phys. Fluids 24 014104

    [26]

    Li C X, Pei J J, Ye X M 2013 CIESC J. 64 3308 (in Chinese) [李春曦, 裴建军, 叶学民 2013 化工学报 64 3308]

  • [1] 张晓林, 黄军杰. 楔形体上复合液滴润湿铺展行为的格子Boltzmann方法研究.  , 2023, 72(2): 024701. doi: 10.7498/aps.72.20221472
    [2] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 表面活性剂液滴过渡沸腾的Marangoni效应与二次液滴形成.  , 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [3] 赵文景, 王进, 秦威广, 纪文杰, 蓝鼎, 王育人. 基于Marangoni效应的液-液驱动铺展过程.  , 2021, 70(18): 184701. doi: 10.7498/aps.70.20210485
    [4] 春江, 王瑾萱, 徐晨, 温荣福, 兰忠, 马学虎. 液滴撞击超亲水表面的最大铺展直径预测模型.  , 2021, 70(10): 106801. doi: 10.7498/aps.70.20201918
    [5] 李春曦, 施智贤, 庄立宇, 叶学民. 活性剂对表面声波作用下薄液膜铺展的影响.  , 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [6] 叶学民, 杨少东, 李春曦. 随活性剂浓度变化的分离压对垂直液膜排液过程的影响.  , 2017, 66(18): 184702. doi: 10.7498/aps.66.184702
    [7] 焦云龙, 刘小君, 逄明华, 刘焜. 固体表面液滴铺展与润湿接触线的移动分析.  , 2016, 65(1): 016801. doi: 10.7498/aps.65.016801
    [8] 叶学民, 李永康, 李春曦. 受热基底上的液滴铺展及换热特性.  , 2016, 65(23): 234701. doi: 10.7498/aps.65.234701
    [9] 王松岭, 刘梅, 王思思, 吴正人. 随时间变化的非平整壁面对液膜表面波演化特性的影响.  , 2015, 64(1): 014701. doi: 10.7498/aps.64.014701
    [10] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [11] 刘梅, 王松岭, 吴正人. 非平整基底上受热液膜流动稳定性研究.  , 2014, 63(15): 154702. doi: 10.7498/aps.63.154702
    [12] 李春曦, 陈朋强, 叶学民. 连续凹槽基底对含非溶性活性剂薄液膜流动特性的影响.  , 2014, 63(22): 224703. doi: 10.7498/aps.63.224703
    [13] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析.  , 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [14] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟.  , 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [15] 李春曦, 姜凯, 叶学民. 含活性剂液膜去润湿演化的稳定性特征.  , 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [16] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析.  , 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [17] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟.  , 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [18] 李春曦, 裴建军, 叶学民. 波纹基底上含不溶性活性剂液滴的铺展稳定性.  , 2013, 62(17): 174702. doi: 10.7498/aps.62.174702
    [19] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究.  , 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [20] 俞允强, 范祖辉. 非奇性球对称黑洞的稳定性.  , 1990, 39(7): 163-166. doi: 10.7498/aps.39.163-2
计量
  • 文章访问数:  7745
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-01
  • 修回日期:  2014-08-12
  • 刊出日期:  2015-01-05

/

返回文章
返回
Baidu
map